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Abstract

Event-driven programming has emerged as a standard to imple-
ment high-performance servers due to its flexibility and low OS
overhead. Still, memory access remains a bottleneck. Generic opti-
mization techniques yield only small improvements in the memory
access behavior of event-driven servers, as such techniques do not
exploit their specific structure and behavior.

This paper presents an optimization framework dedicated to
event-driven servers, based on a strategy to eliminate data-cache
misses. We propose a novel memory manager combined with a
tailored scheduling strategy to restrict the working data set of the
program to a memory region mapped directly into the data cache.
Our approach exploits the flexible scheduling and deterministic
execution of event-driven servers.

We have applied our framework to industry-standard web
servers including TUX and thttpd, as well as to the Squid proxy
server and the Cactus QoS framework. Testing TUX and thttpd us-
ing a standard HTTP benchmark tool shows that our optimizations
applied to the TUX web server reduce L2 data cache misses under
heavy load by up to 75% and increase the throughput of the server
by up to 38%.

1. Introduction

High-performance network applications have exceptional scalabil-
ity requirements, as they need to keep pace with ever-increasing
network speeds and user demands. For this reason, they have been
studied as a separate class of applications and have been optimized
extensively [2, 7, 11, 17, 18, 22, 24]. One optimization that has
proved very successful in providing high efficiency in the face of
heavy loads is the use of the event-driven paradigm [1, 18]. In-
deed, the commercially-available servers that are recorded to de-
liver the highest performance [9], such as TUX [15], Flash [18]
and Zeus [16] for the HTTP protocol and SER [12] for telephony,
are event-driven.

The event-driven paradigm implements the processing of a task
as a finite state machine, in which the transitions between machine
states are triggered by events. This paradigm generalizes naturally
to concurrent tasks, by implementing each task as a continuation
that records its own data and machine state. As compared to pro-
cess and thread-based programs that rely on the OS for scheduling,
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an event-based program performs its own task management, per-
mitting the use of specialized data structures and scheduling strate-
gies. Furthermore, in the event-driven paradigm, the concurrency
between tasks is controlled, as tasks can only be interrupted at event
handler boundaries, making it easy to reason about the code within
an event handler, as compared to the case of process and thread-
based programs, where switching between tasks can occur at any
point. Finally, as compared to general event-driven programs such
as GUIs, event-driven servers have a highly deterministic execu-
tion, in which one event handler typically sets up the next. This
property makes it possible to reason about task behavior across a
sequence of events.

Today, the conditions affecting the performance of servers are
rapidly changing. Network speeds are increasing and main mem-
ory is becoming large enough to replace disks as the principal stor-
age unit for server data. Accordingly, network transfer and disk I/O
have become less of a performance bottleneck, exposing other over-
heads as the dominating factor in server performance. The most
prominent of these overheads is that of memory accesses. Indeed,
memory latency exceeds that of computations by up to two or-
ders of magnitude. Heavy loads on the server cause an explosion
in the working data set of a server, reducing the effectiveness of the
data cache and thus causing a sharp degradation in performance.
Generic compiler optimizations have proved ineffectual in signif-
icantly improving this memory access behavior. Nevertheless, we
observe that the specific properties of event-driven network servers
introduce several optimization opportunities.

This paper presents an optimization approach based on the co-
design of a memory manager with a scheduler. In effect, this co-
design introduces cache-awareness into the scheduling algorithm.
We exploit the determinism of event-driven servers to allow the
memory allocator to be able to statically predict memory require-
ments across a sequence of events. We exploit the fact that an event-
driven server manages its own task scheduling to augment the pro-
vided scheduling algorithm to take cache behavior into account.
Our approach is the most effective on programs for which the run-
time footprint of a single task is guaranteed to be smaller than the
L2 cache size, as is the case in many high-performance network
servers. In this case, we take measures to prevent the working data
set of the program from overflowing this cache.

Our optimizations are integrated into a server program through
static analysis and transformation of its implementation. We pro-
vide tools that automatically carry out these operations in an
event-driven C program that conforms to a memory allocation and
scheduling interface specified in this work. Legacy event-driven
programs can be modified to expose this interface using specific
code annotations or by implementing stub functions correspond-
ing to those in our interface. The integration process then consists
of four steps. First, static analysis is used to identify the server’s
memory-usage behavior. Second, a customized memory allocator
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is generated according to the size distributions and lifetimes of the
data, identified in the first step. Third, invocations of the original
memory allocator in the program are replaced by invocations of the
customized one. Finally, the scheduler is modified to use feedback
from the customized allocator to ensure that the total data set stays
in a cache-aligned, cache-sized region.

The contributions of this paper are as follows:

e We present a novel cache-aware memory allocator, called the
“Stingy Allocator”. This allocator can be used with any pro-
gram for which the size distribution of data objects is either de-
fined statically or can be predicted by profiling. In coordination
with specific scheduling refinements, the Stingy Allocator can
be used to nearly eliminate cache misses from an event-driven
server.

We present a strategy to extend the scheduler of an event-
driven program to incorporate an additional cache criterion.
This strategy is enabled by the Stingy Allocator.

We describe a set of program analysis tools that apply the
approach to existing programs.

We present an evaluation of our work in the context of the
following event-driven servers: The TUX, thttpd and Flash web
servers, the Squid proxy server and the Cactus QoS framework.

Specifically, we evaluate two aspects of our work: (i) The appli-
cability of our static analysis tools and (ii) The impact of our op-
timizations on program throughput. For the latter, experiments
conducted on TUX and thttpd show that our optimizations re-
duce the number of L2-cache misses by up to 75% and increase
server throughput on the network by up to 38%.

The rest of the paper is organized as follows. In Section 2
we describe the architecture of event-driven programs from the
point of view of caching behavior. In Section 3 we propose a
novel memory allocator, the Stingy Allocator, and a scheduling
strategy to prevent the working set of an event-driven program
from overflowing the data cache. Section 4 describes our toolkit
for applying our optimization approach. Section 5 evaluates our
approach on a number of event-driven servers. Finally, Section 6
presents related work and Section 7 concludes.

2. Event-driven Servers

Event-driven servers have a rigidly defined structure, making them
amenable to specific optimizations. This section gives an overview
of event-driven servers, emphasizing their characteristic structure.
It also discusses their cache behavior, bringing out specific caching
inefficiencies and their impact on the server’s performance.

2.1 Overview

An event-driven program typically consists of a single thread that
loops continuously, processing a stream of events. Events may
be generated on the occurrence of some I/O, or issued explicitly
by the program itself. Once intercepted, an event is interpreted,
and the tasks corresponding to it are considered for scheduling.
Scheduling a task amounts to executing the handler associated with
the event in the task’s current context. Once initiated, a handler runs
uninterruptedly until completion. '

Concurrency is managed in an event-driven program by repre-
senting each task as a continuation consisting of the current task

!'Various strategies such as event-coloring [25] and per-stage thread
pools [24] have been explored as a means to scale event-driven programs
to multiprocessors. We are currently in the process of exploring the ex-
tension of our work in these directions. In its current form, we assume a
uniprocessor system.
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Figure 1. An event-driven server.

state and a pointer to the code to be executed in response to the next
event. This representation constitutes one of the biggest differences
between thread and process-based servers and event-driven servers.
While thread and process-based servers abstract task state as OS-
level threads or processes, event-driven servers store this state in
concise application-specific data structures, and are free to use and
manipulate them as required.

Event-driven servers are distinguished from other event-driven
servers such as GUIs by their highly deterministic behavior. Typ-
ically, an event-driven server receives a fixed sequence of events
in the processing of a given request. For example, a HTTP server
first receives a request, then parses it, then processes it, etc. Ac-
cordingly, we can view the structure of an event-driven server as a
series of stages, as illustrated in Figure 1.

Overall, the implementation of an event-driven server can be
characterized by the following elements:

e Stages: A stage is represented by a function and is bound to
one or more events. It has a small number of possible prede-
cessor and successor stages. A stage may allocate data for local
use, and may allocate or use data that persists over multiple
stages. Before terminating, a stage queues zero or more succes-
sor stages to be executed next.

Tasks: A task represents the complete processing of a request.
As such, it defines an execution context for the server. This
execution context includes data that is shared by multiple stages
of the task execution.

Events: An event triggers the activation of a stage in a task con-
text. Events may be external and generated by 1/O operations or
internal and generated by the program.

Scheduler: The scheduler is the part of the server implementa-
tion that iteratively extracts stages waiting to be executed and
executes them in their corresponding task contexts. It is typi-
cally implemented by a designated function.

2.2 Performance of Event-driven Servers

When the amount of data manipulated by a server is more than
the size of the main memory, its throughput is limited by I/O ac-
tivity such as disk reads. The behavior of servers under such cir-
cumstances has been widely studied [18, 10]. When the amount of
memory available is sufficient to maintain this data, as is more often
the case today, I/0 is no longer a bottleneck. Then, the efficiency of
the server implementation plays a crucial role in the performance of
the server. Two aspects of the server implementation dominate its
resulting performance: its interaction with the OS and its behavior
with respect to the underlying hardware caches.

The event-driven architecture has been shown to be highly suc-
cessful in optimizing the OS-interaction aspect of servers [1] by
eliminating the need to use threads and processes to abstract tasks
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Figure 3. Throughput degradation with increasing L2 cache
misses.

altogether, and facilitating the use of efficient OS primitives for
non-blocking operations. Once the bottlenecks associated with the
scalability of OS primitives have been removed, the overheads as-
sociated with memory accesses become more important and can be
observed to cause a significant degradation in server performance.

In the following subsection, we will study the cache behavior
of event-driven servers on a highly efficient implementation of the
event-driven architecture, namely, the TUX web server. Through
the TUX web server, we will study the influence of the data cache
on server performance.

2.3 Caching behavior

At any given time, the memory that is used by an event-driven
server consists of the data that is (i) live in the contexts of the
various concurrent tasks, (ii) the global state of the server, and (iii)
the local data of the currently executing stage. When the total size
of this data exceeds the capacity of the cache, cache misses occur,
resulting in expensive main-memory accesses. The capacity of the
cache depends on both its size and its associativity, i.e., how many
cache lines are available to represent a given memory location.

We illustrate the cache behavior of an event-driven server using
the program shown in Figure 2(a). This program consists of five
stages, each annotated with the objects live in the stage. For objects
that are dynamically allocated, the beginning of its lifetime is
marked by an explicit memory allocation and the end by an explicit
deallocation. For statically allocated objects, the lifetime can be
seen as the time between the first and last use of the object. In this
program, we assume that all objects are the same size, and that the
scheduling is round-robin.

We consider the concurrent execution of four tasks, whose pro-
cessing begins simultaneously, as illustrated in Figure 2(b). Each
task allocates an O2 object in its first stage. As this object is also
used by stages 2 and 3, it becomes part of the context of each task.
Thus, at the end of the processing of the first stage the memory
requirement of the server consists of four instances of O2. Since
the total size of these instances is much smaller than the size of
the cache, the data can be expected to fit within it. The second and
third stages allocate and then use the additional object O1. Thus,
between the second and third stages, the memory requirement of
the server consists of four instances of O2 as well as four instances
of O1. This requirement exceeds the cache capacity. In this case,
the state of the server can no longer be maintained in the cache
and must be spilled into memory, requiring expensive memory ac-
cesses.

When a server is heavily loaded, memory traffic is high, and
cache behavior can degrade quickly. On a cache miss, an arbitrary
data item is evicted. If this item is live, which it is likely to be when
the server is under heavy load, it will soon be reloaded, probably
evicting another live data item, leading to a domino effect. This
degradation in performance can be observed in practice. Figure 3(a)

shows the change in the L2 data-cache misses when running TUX
as a function of the concurrency of the workload (i.e., the number
of concurrent requests in flight over the network).

The performance regime in Figure 3(b) consists of three regions.
In the leftmost region (marked ‘I’), throughput increases constantly
as the latency of packets over the network gives the server enough
time to process the small batches of requests sent. Thus, increasing
the number of concurrent requests uses up an increasingly large
fraction of this available latency. When the concurrency increases
to an extent that fully utilizes this latency, then the server begins
to process multiple requests concurrently (region ‘II’). We believe
that the improvement in this region comes as a result of improved
instruction locality. The decreasing number of i-cache misses in
Figure 3(a) support this belief. In the third region (region ‘III’), we
find that the amount of data corresponding to the requests treated
concurrently no longer fits in the L2 cache. Thus, there is a steady
increase in the number of L2-cache misses along with a steady
degradation in performance. Finally, in the fourth region, the server
is overwhelmed with requests and spends the majority of the CPU
cycles available to it in dealing with new requests. As a result, its
throughput drops abruptly, and it fails.

3. Eliminating Data-Cache Misses

Our goal is to eliminate cache misses in the largest cache present on
the system, i.e., an external cache (e-cache), or L2 cache in the ab-
sence of an e-cache. We find this overhead to be the biggest bottle-
neck, and penalties arising due to L1 cache misses less significant.
Indeed, on most modern processors, the difference between mem-
ory latency and L2 (or e-cache) latency is more than two orders of
magnitude greater than the corresponding difference between L2
and L1 cache latencies.

The working data set of an event-driven server comprises a
stack, assumed to be allocated statically, global data, which may
be allocated dynamically or statically, and per-task state, which is
all data that is maintained within a stage or across multiple stages.
The per-task state typically makes up the bulk of an event-driven
server’s working set, and is thus the main target of our optimization
strategy.

In this section, we give an overview of our optimization strat-
egy in three parts. First, we briefly describe the three main data
regions that constitute the program working set. Second, we give
an overview of our cache-aware memory allocator, the Stingy Al-
locator. Finally, we discuss the role of the scheduler in cache uti-
lization, focusing on adjustments in the scheduler to improve cache
behavior.

3.1 The Stingy Allocator

The Stingy Allocator is the basis of our optimization strategy to
improve the cache behavior of a program. It controls where and
how much memory is allocated to ensure that the data items in the
working data set of a program will not cause collisions in the L2
cache. The control over where memory is allocated is obtained by
allocating memory from a memory region that is mapped directly to
the L2 cache? The control over how much memory is allocated is
obtained by first analyzing the program to determine its memory
requirements and then laying out this required memory in the
cache-mapped region such that there are no cache collisions. All
the components of the server’s working data set are contained in
this memory region. Furthermore, each object is assigned an area

2In our implementation for the Pentium I and Pentium III processors,
aligning the memory region with the cache amounts to reserving and using
a physically contiguous range of memory of the size of the L2 cache. The
Linux 2.6 kernel provides a set of interfaces to obtain virtual memory ranges
that are contiguous in physical memory.
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Figure 2. Per-task state during program execution

in this region and a limit is imposed on the number of instances of
each object that are active at a time.

The Stingy Allocator manages a fixed number of each kind of
object, and guarantees that as long as a program uses only these
objects, they will not interfere with one another in the cache. The
Stingy Allocator must thus be configured by selecting the number
of each kind of object. This selection takes into account constraints
on the size of the cache, the set of objects used within a given stage,
the sequence in which the object used by a given are allocated, and
the desirability of concurrency at the various stages.

The maximum memory usage that a single stage can entail is
the case where one task is executing in the stage and all of the
others are waiting to enter the stage. In this case, we must ensure
that all of the objects live in these tasks fit within the cache. For
each stage, we thus obtain the following constraint, where £ is the
set of objects live at the beginning of the stage, A is the set of
objects allocated during the stage, size(O;) is the size of object O;,
no, is the number of instances of object O; managed by the Stingy
Allocator, and 7 is the amount of cache space allocated to per-task
state:

Y0,ec(size(0r) - no,) + Lo, casize(Oa) < T

For example, in the case of stage 2 in Figure 2(a), we obtain the
following constraint:

size(O2) - no, + size(O1) < 7

We obtain further constraints from the allocation order of ob-
jects that are live in the same stages. Consider objects O2 and O1
in Figure 2(a), which are both live in stages 2 and 3. As the object
02 is allocated before the object O1, any task that is holding an O1
object must be holding an O2 object as well. Thus:

Nno, 2 MO,

More generally, the relation between any two objects can be char-
acterized in terms of the standard compiler dominance relation be-
tween their allocation and deallocation sites. That is, for any objects
O; and Oy, if the allocation site of O; dominates that of O; and the
allocation site of O; dominates the deallocation site of O;, then we
obtain the constraint:

no; = no;
The above constraints generally leave substantial latitude in the
numbers of the various objects. As the number of objects managed
by the Stingy Allocator determines the number of tasks that can be

executing at a given stage, it is desirable to solve the constraints
with respect to an objective function that maximizes the number of

objects available for stages where high concurrency is beneficial,
e.g. to improve the i-cache behavior. A detailed discussion of how
to encode concurrency strategies in the objective function is out of
the scope of this paper. However, for the sake of clarity, we take up
an example.

Let us consider a simple model of an event-driven program’s use
of the instruction cache. We define a run of a stage as a series of
consecutive executions of it for a batch of tasks. We assume that the
first iteration of a run causes instructions of the stage to be fetched
from the main memory so that the following iterations retrieve these
instructions from the cache. Then, the cost of the first iteration of a
stage is significantly greater than that of the second and subsequent
iterations. Let the cost of the first iteration be defined for each
individual stage 7, by the quantity w;.

We define the instruction-fetch work done in processing N
tasks as the sum of the cost of processing the first iteration of
every run involved in treating the tasks. Thus, minimizing the
amount of instruction-fetch work done also minimizes the number
of instruction cache misses.

If M., is the instruction-fetch work function, S is the set of
stages and L is the set of objects live in stage s, then M,, is defined
as follows:

ws - N
minp,ec, no,
The intuition behind taking the minimum of the number of the
objects that are live in a stage is the fact that the flow of tasks
through a stage is limited by the minimum number of objects of
a given kind available at the stage.

By combining the constraints dictated by the data-cache with
this objective function, we obtain an Integer Programming mini-
mization problem. Thus, the configuration of the Stingy Allocator,
i.e., the number of objects of each kind, is obtained by solving this
problem.

Mw (N) = ESGS

3.2 Scheduling for cache efficiency

The Stingy allocator never allocates an object that would cause
it to exceed its configured bounds. To avoid the complexity and
inefficiency of starting to execute a stage only to have its memory
allocation fail, we augment the server’s scheduler to make it aware
of the memory requirements of each stage and the current ability of
the Stingy Allocator to satisfy these requirements. This information
is provided by a table that maps a stage to the set of objects that are
allocated by the stage and the number of those objects currently
available. As an example, consider one possible solution for the
number of objects O1 and O2 in Figure 2(a), no1 = 3,no2 = 4.
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TUX:

void add_tux_atom (tux_req_t *req, atom_func_t *atom)
__attribute__ ((QueueStage ("T","S")));
void *tux_malloc (int size)
__attribute__ ((Malloc ("int")));
void kfree (void *mem)
__attribute__ ((Free ("0"));
static int event_loop (threadinfo_t *ti)
__attribute__ ((Scheduler));
tux_req_t *tux_malloc_req ();
tux_req_t *tux_malloc_req_wrap (int size)
__attribute__ ((Malloc ("int")));
tux_req_t *tux_malloc_req_wrap (int size)
return (tux_malloc_req());

Figure 4. Example annotations and wrappers for TUX.

In this case, when the scheduler is about to schedule task 4 at stage
2, it will discover that the Stingy Allocator does not have any more
instances of object O2 left to allocate, and will thus select a task
that is in another stage. In addition to the benefit of ensuring that an
elected task can run its current stage to completion, this approach
allows the scheduler to group homogeneous tasks into batches and
check the availability of memory for an entire batch at a time.

4. Integrating the Stingy Allocator with legacy
code

Our optimization framework consists of a set of analysis and trans-
formation tools that are used to convert a program to use the Stingy
Allocator and the associated scheduling strategy. In this section, we
first describe the use of these tools by a programmer who wants to
optimize an event-driven server, and then present the analyses and
transformations underlying the tools.

4.1 A programmer’s eye view

We take as a starting point an event-driven server written in C. Our
framework requires that the server conform to a fixed interface,
describing the signatures of relevant functions such as queuing a
stage and allocating memory. If the program conforms to a com-
patible interface, as is mostly the case for TUX, Flash and Squid,
source-code annotations can be used to identify the corresponding
functions. If not, wrapper functions need to be introduced.

Figure 4 contains examples of the annotations and wrappers
used in TUX. The add_tux_atom function is identified as the inter-
face construct QueueStage. Its first argument is labeled with “T”,
indicating that it represents the task context, and the second with
“S”, indicating that it represents the stage to be queued. Similarly,
the functions tux_malloc and tux_free are identified as the Mal-
loc and Free constructs respectively. The tux_malloc_req func-
tion, used to allocate a request data structure, cannot be labeled
directly as it does not accept any argument corresponding to the
size of the allocated data. This function must hence be wrapped in
a new function that accepts as argument the object size. Invoca-
tions of tux_malloc_req in the source code must then be textually
replaced by invocations of tux_malloc_req_wrap.

Once the server has been made to conform to our interface, it
can be analyzed and transformed by our tools. This process entails
the following steps:

Analyzing memory utilization. The first step is to analyze the
memory utilization of the program. For this purpose, we provide the
tool memwalk, which analyzes the program and provides conserva-
tive approximations of three quantities: (i) The amount of stack
used by the program (ii) The amount of per-task state allocated and

deallocated categorized for the various objects. (iii) The amount of
global state used by the program. The output of this tool is used in
the subsequent steps.

Parameterizing the Stingy Allocator. The second step is to gen-
erate a configuration of the Stingy Allocator that corresponds to the
output of memwalk. This output is fed into a tool named stingygen
that yields a memory map. This memory map is to be compiled with
the server implementation and is referenced by the Stingy Alloca-
tor, which is linked in as a library.

Using the allocator. The third step is to transform the program to
use the Stingy Allocator in place of the original memory allocator
used by the program. This step involves simply replacing the oc-
currences of Malloc in the stages, by invocations of the Stingy Al-
locator memory allocation function StingyAlloc. StingyAlloc
differs from Malloc in that its argument is an index indicating the
allocation site rather than the requested memory size.

Modifying the scheduler. The final step is to modify the sched-
uler. In this step, the programmer modifies the scheduler to incor-
porate the cache criterion. Figure 6 shows a round-robin scheduler
for an event-driven program, before and after being modified to in-
clude this criterion. Apart from the usual scheduling criteria sum-
marized by the function Elect_And_Dequeue_Task, an invocation to
the StingyDynCheck function, defined by the Stingy Allocator li-
brary, checks whether enough instances of all the objects required
to schedule a task are available.

The modification of the scheduler is the only step for which we
do not provide an automatic tool, because the scheduling code may
vary widely. In our experience with a variety of legacy event-driven
servers (see Section 5), it is easy for the programmer to identify the
code implementing the scheduling criteria and to augment this code
with the appropriate use of StingyDynCheck.

4.2 Analyses and transformations

‘We now describe the analyses and transformations implemented in
the memwalk and stingify tools.

4.2.1 Identifying the stages and the scheduler

To analyze the stack, global, and per-task state of a program,
memwalk needs to identify the stages and to distinguish the code
implementing these stages from the implementation of the sched-
uler. We begin with the identification of the stages. We represent the
program stages using a graph called the Stage Call Graph (SCG).
Nodes in the SCG represent functions, and edges represent either a
call relationship (function A calls function B) or a queuing relation-
ship (function A queues function B to be scheduled). Call relation-
ships are referred to as as call edges, and queuing relationships as
event edges. Call edges are indicated by C language function calls.
Event edges are indicated by analyzing invocations of the construct
Queue_Stage, described in Figure 5. Thus, if a function A invokes
Queue_Stage(atask, B) then an event edge is added between the
nodes corresponding to A and B. In either case, the destination
of the edge may be represented by a function pointer. Thus, our
implementation provides an alias analysis that enumerates all the
aliases of the function value.

Once the SCG has been built, the stages are the call-edge con-
nected components that are reachable from at least one event edge.
Sometimes, an edge has both incoming call edges and incoming
event edges. We treat such cases by duplicating the correspond-
ing node in the graph, so that the call-edge pointed copy becomes
part of a larger stage, and the event-edge-pointed copy becomes
the entry point of another stage. Sometimes, the constructed SCG
can consist of many connected components, corresponding to in-
dependent functionalities of the server (such as implementations of
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Queue_Stage : S X T — wvoid A function that queues a task to be executed at a
particular stage.
Scheduler : void — void The implementation of the scheduler.
Malloc : int — O A function to allocate a block of memory for an object in O.
Free : O — void A function that frees the memory allocated for an object in O.
Where,
S C [0, 00) is the set of stages.
T C [0,00) is the set of tasks.
0] is the set of objects used by various stages in the course
of processing tasks. Each allocation site corresponds to a
distinct object.

Figure 5. Interface used to extract the structure and memory utilization behavior.

while (1) {
while (workqueue.events_pending) {

Sleep_And_Wait_For_Events();

}

cur_task = Elect_And_Dequeue_Task(workqueue);
Schedule_Stage(cur_task.stage, cur_task.context);

/ as long as the program is running
/I the workqueue is not empty

(a) Original

while (1) {
while (workqueue.events_pending) {

Sleep_And_Wait_For_Events();

}

cur_task = Elect_And_Dequeue_Task(workqueue,  // StingyDynCheck is now passed
StingyDynCheck); // as a predicate.
Schedule_Stage(cur_task.stage, cur_task.context);

// as long as the program is running
// the workqueue is not empty

(b) Modified

Figure 6. Modifying the scheduler

hip. process_message [nf=45.5c=234]_>
list_directory [nf=2,>c=642]
http_dirlist_tail [nf=9,sc=80]

flush_request [nf=1,sc=0]

Figure 7. A fragment of the Stage Call Graph (SCG) of TUX. nf
denotes the number of functions in a stage, and sc its maximum
stack utilization in bytes. Functions belonging to the same stage
have been collapsed into a node representing the stage.

different protocols). Some of these functionalities may include un-
desired ones that pollute the SCG. For example, the Squid proxy
server uses its event interfaces for interacting with users, applica-
tion timeouts efc.. As such functionalities are likely not subject to
heavy loads, they need not be optimized using the Stingy Alloca-
tor. The exploration of an SCG may be started at a particular node
specified as input to the memwalk tool.

The entry point of the scheduler is the function implementing
the Schedule item of the interface. The analysis identifies as the
scheduler all of the functions reachable by a depth-first traversal
from the node representing this function up to the entry points of
the stages

A part of the SCG obtained by analyzing the TUX Web server
is summarized in Figure 7. To save space, we have collapsed func-
tions belonging to a particular stage into a node representing that
stage. Each node in this modified SCG is annotated with the total
number of functions that constitute the corresponding stage, along
with its estimated stack utilization, as calculated by the analysis in
the following section.

4.2.2 Memory Analysis

The second analysis carried out by memwalk is the analysis of
memory used by the stages. We will describe this separately for
each type of state.
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Analysis of per-task state The analysis of per-task state can be
seen as an analogue of the liveness analysis performed by an op-
timizing compiler. An object is live between the time that it is al-
located and the time that it is deallocated. Each stage is associated
with a transfer function that updates the set of live objects. When
an object is allocated using the Malloc construct, it is added to the
live set, and when one is deallocated using the Free construct, it is
removed from the live set. At the end of the analysis, those objects
that are live at terminal stages are assumed global. The remaining
objects belong to per-task state.

The liveness of objects also determines object dependencies. If
two objects are live in the same stage, then they are dependent and
may not share memory (in much the same way as program vari-
ables that are live together may not share the same registers). Such
objects are assigned to different memory regions by the Stingy Al-
locator. Objects that cannot be allocated simultaneously for a task
may be assigned the same region. To maximize memory utilization,
the dependency analysis colors a graph with objects at the nodes
and edges specifying a dependency between objects. The number
of colors is minimized to maximize the utilization of the cache.
Each color is ultimately allocated a separate region by the Stingy
Allocator.

Cycles in the SCG are identified by enumerating strongly-
connected components using Tarjan’s algorithm [21]. For objects
allocated in such cycles, the number of instances that may be al-
located per task is unbounded. Thus, by default, these objects are
not managed by the Stingy Allocator and continue to use the origi-
nal memory allocator. Alternatively, such data can be managed by
the Stingy Allocator if the programmer annotates the code with an
estimate of the number of instances of each such object that may
be allocated per task. The occurrence of cycles in the SCG usu-
ally corresponds to situations in which a stage queues itself to be
executed in the future due to the unavailability of input data, or a
temporary failure. For example, the parse_request stage in 7 queues
itself when the input buffer received by it is incomplete, and hence
cannot be parsed in the current iteration. In most such situations,
objects that are live in the stage are usually allocated in the first
iteration and preserved over subsequent ones. Indeed, loops in the
SCG in which every iteration performs an allocation are rare.

Analysis of global state  Global state is identified during the anal-
ysis of per-task state, as described above. Once an object has been
classified as global, it is sub-classified based on its size. Objects
smaller than a user-defined threshold are labeled final and those
that are larger are labeled temporary. Final objects are kept perma-
nently in the cache, while temporary objects are stored in uncached
memory and copied in on demand.® The threshold used for the clas-
sification typically depends on the object size distribution and the
size of the cache. Keeping too many or too large objects in the cache
permanently can leave insufficient room for per-task state, reducing
the number of tasks that can be treated concurrently.

Stack analysis The total stack space required is calculated to
be the sum of the maximum stack used by the scheduler before
scheduling a task, added to the maximum stack used by the stages.
The amount of stack required for a function is computed as the
sum of two quantities: (i) The amount of memory consumed by all
the local variables and (ii) The stack required to call the function,
which includes the sizes of the arguments, the return address and
saved registers. The amount of stack required along a path is calcu-
lated by summing the stack requirement for each function along the
path. Recursion is handled in the same way as cycles in the SCG,
by identifying strongly-connected components in the call graph.

3 An explanation of the implementation of this aspect of the Stingy Alloca-
tor is omitted for brevity.

If the stack usage varies widely, then allocating the maximum
amount required may result in many locations in the cache-aligned
region that are very rarely used. Indeed, exceeding the cache region
allocated to the stack does not result in a program crash due to a
stack overflow, but causes the stack to spill out of the Stingy Alloca-
tor’s cache-aligned region resulting in cache misses. Although this
situation is undesirable, it does not prevent the program from func-
tioning correctly. Thus, the memwalk tool not only calculates the
maximum size of the stack, but also summarizes the sizes around
which the stack utilization of various paths is clustered. The pro-
grammer may edit this information before passing it to stingygen,
to choose a smaller stack size if desired.

4.2.3 Parameterizing the Stingy Allocator

Using the memory utilization information provided by memwalk,
the tool stingygen generates a configuration for the Stingy Allo-
cator, which includes a memory map and some data structures used
for accounting. The memory map is based on an analysis of the
sizes of different state components. For the stack and final global
state, a fixed amount of space is set aside permanently, while for
the per-task state, dependencies between objects as discussed in
Section 3 are used to distribute objects into different regions. The
sizes of the individual regions depend on the calculated values of
the per-object limits, as calculated in Section 3.

4.2.4 Code Annotations

The Stingy Allocator relies on determinism in the memory utiliza-
tion behavior of the program. However, in the presence of features
such as recursion and dynamically sized buffers, statically deter-
mining the memory utilization is not possible. To enable the opti-
mization of programs in the presence of these features, we propose
the use of specific annotations in the source code. These annota-
tions are currently provided as C language attributes. These anno-
tations have already been mentioned in Section 4.1.

Figure 8 illustrates such an annotation in the source code of
a server, and a sugare version of the output generated by the
stingify tool. The new attributes we introduce, stingy_size
and stingy_count can be used to provide an optimistic estimate
of the size of a dynamically sized object, or that of the maximum
number of per-task instances of an object in the case of dynamic
loops, recursion and SCG cycles. The code generated for the allo-
cation of the object contains a guard to check if the specified size of
the object is exceeded, and accordingly uses the default allocator or
the Stingy Allocator. No such guard is required in the correspond-
ing deallocation of the object, as objects allocated by the Stingy
Allocator can be identified on the basis of their virtual memory
addresses.

The estimates passed to the tools may be intuitive, or obtained
by profiling. As an example of the former, TUX contains a cycle in
its SCG at the request parsing stage. This loop ensures that parsing
begins only when a request has been fully received. Although the
analysis reports that the request buffer allocated in this stage has po-
tentially unbounded instances, examining the code reveals that this
buffer is only allocated on the first iteration. Thus, an annotation is
added to set its stingy_count attribute to 1. Although generating
these estimates is error-prone, the use of a guard guarantees that
a misestimate does not corrupt the functioning of the program. At
worst, providing a wrong estimate reduces performance.

5. Experimental evaluation

‘We have applied our tools to five event-driven programs: The TUX,
thttpd and Flash web servers, a test server using the Cactus QoS
framework and the Squid proxy server. In the first part of this
section, we discuss the applicability of our approach by giving an
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Input:

#define STINGY_DIR_SIZE 148
char *dir name __attribute_ ((stingy_size (STINGY.DIRSIZE));
dir name = (char *) Malloc(strlen(request->well_formed.url);

Output:

char *dir_name;
int __tmp0 = strlen(request->well formed url);
if (_tmpO < 148) {
dir_name = StingyAlloc(ID_DIR_NAME);
}
else {
dir name = (char *) Malloc(strlen(request->well formed.url);

}

Figure 8. Guiding the tools using code annotations.

overview of the effort involved in processing these programs. All
these programs, with the exception of Flash, are available publicly.
The Cactus QoS framework is distributed as a library along with
the implementation of an example transport protocol (CTP). We
applied our tools to a test server that uses this protocol.

To evaluate the performance benefits of our approach, we eval-
uated the performance of unmodified versions of TUX and thttpd
on a real network using a standard benchmarking tool for HTTP
servers [13], and then did the same for a version optimized using
our toolkit. In Section 5.2 we present an analysis of these experi-
ments.

5.1 Applicability

‘We have claimed that the interface used by our tools for the purpose
of analysis and transformation is general and widely applicable. In
this section, we support this claim with evidence in the form of
actual code excerpts, shown in Figure 10, containing some repre-
sentative wrappers and annotations written to apply our toolkit to
the programs considered.

In Cactus, a stage specifies the next event to be executed using
the function cRaiseEvent. This function is used by the current stage
to specify the next event to be scheduled for the current task. Since
a function annotated with QueueStage needs to accept a pointer
to a stage function, cRaiseEvent is wrapped in a function that
accepts an additional argument of a pointer to a function. The field,
1Binding->p in the event data structure contains the function
pointer that the event is bound to. As mentioned in Section 4, an
alias analysis collapses this function pointer into a set of candidate
successor stages. This stage is passed as an additional parameter to
the function.

In thttpd, the scheduler looks up the stage to be executed in a
particular context using a connection state, represented by an enu-
merated type. Thus, queuing the next stage to be scheduled amounts
to modifying the value of the connection state. This functionality is
thus wrapped in a new function, which accepts the additional pa-
rameter of the function corresponding to the stage to be executed,
along the lines of the previous example.

Collapsed SCGs corresponding to Flash, the Squid server and
thttpd are shown in Figure 9. Other SCGs are left out to save space.

5.2 Evaluation

We ran our experiments on a Gigabit network between a powerful
client system with two Intel Xeon processors running at 3GHz, and
a server system with an Intel Pentium III M running at 1.4GHz.
The server has 1Mb of L2 cache and 2GB of RAM. The aim of
using a powerful machine as the client is to ensure that operation is
bottlenecked on the server. We verified that this was the case using

Cactus:

extern int cRaiseEvent( cevent *pev, ceventmode em,
int nDelay, int nUrgency, int cDynamicArgs);
extern int cRaiseEvent_wrap( cevent *pev, funcptr_t
*func_pointer, ceventmode em, int nDelay, int
nUrgency, int cDynamicArgs)
__attribute ((QueueStage
(GOSN LI QD G S S
extern int cRaiseEvent_wrap( cevent *pev, funcptr_t *
func_pointer, ceventmode em, int nDelay,
int nUrgency, int cDynamicArgs)

cRaiseEvent (pev, em, nDelay, nUrgency, cDynamicArgs);

Example invocation:

cRaiseEvent_wrap (pev, pev->1Binding->p,
em, nDelay, nUrgency, cDynamicArgs);

thttpd:

extern int QueueStage (connecttab *c, int state,
funcptr_t *func_pointer) {
c->conn_state = state;

}

Example invocation:
QueueStage(c, CNST_READING, handle_read)
Flash:

void
SetSelectHandler (int fd, SelectHandler s, int forRW)
__attribute ((QueueStage ("X", "S", "X")));

Squid:

void eventAdd(const char *name, EVH * func,
void *arg, double when, int weight)
__attribute ((QueueStage ("X","S","X","X","X")));

void commSetSelect(int fd, unsigned int type,
PF * handler, void *client_data, time_t timeout)
__attribute ((QueueStage ("X","X","S","X","X")));

Figure 10. Excerpts of Code Annotations for the Programs. The
test programs are annotated and instrumented with wrappers to
expose a standard interface for the purpose of analysis.

the Netperf benchmark suite [8]. We used the Apachebench [13]
package to measure performance. Apachebench has been previ-
ously used to evaluate HTTP server performance in the systems
community [23, 24].

Figures 11(a) and 12(a) show the variation of requests serviced
per second with increasing concurrency in the two servers. Fig-
ures 11(b) and 12(b) show the corresponding variation in L2 cache
misses. For the most intense loads, the requests serviced by TUX
increase by about 38% and L2 cache misses decrease by about 75%.
For thttpd, the throughput increases by about 12% and the number
of L2 cache misses by about 53%.

We attribute the massive difference between the improvements
observed in the two servers to the difference in their original imple-
mentations. TUX is highly optimized and makes use of low-level
OS interfaces to achieve the highest possible efficiency [15]. On
the contrary, thttpd is an ordinary http server that uses standard OS
mechanisms and is not known as a high performance server. As
one may observe in Figures 11(a) and 12(a), the absolute through-
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IdleSockHandler [nf=1,s¢=20]

(c) Flash

Figure 9. Portions of collapsed SCGs for the test programs (Call-edges have been deleted.)
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Figure 11. Comparison of the performance of the original TUX
server to that of the optimized TUX server
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Figure 12. Comparison of the performance of the original thttpd
server to that of the optimized thttpd server

put of TUX is about 2.5 times that of thttpd. We consider that TUX
is representative of the target applications of our work because it is
already highly optimized, making the cache bottleneck all the more
significant.

The cache misses that remain even after the inclusion of the
Stingy Allocator occur due to interference with modules on which
the servers depend that are not modified to use the Stingy Allocator.
Such modules include OS modules such as the protocol stack and
the file system drivers and external library functions. In order to
entirely eliminate data-cache misses, one would need to include
these modules in the optimization process through explicit OS
support for the Stingy Allocator. We are currently in the process
of exploring this extension.

6. Related Work

With the increasing gap between microprocessor speeds and mem-
ory access times, the optimization of cache usage has been an in-
tensively researched topic in the compiler and systems community.
Due to its sheer size, it is impossible to cover the full body of work
in the domain. We will focus on the works that are the most related
to ours.

Larus and Parkes presented Cohort scheduling [14], which is
another scheduling strategy to improve the cache performance of
concurrent programs. Cohort scheduling induces consecutive runs
of stages by accumulating (cohorting) tasks at specific stages. This
policy is configured by heuristics based on inter-stage delays and
queue lengths, and has the most positive impact on static global
state and the instruction cache. Our work strikes a balance be-
tween per-task state and global state by using static analysis. Better
instruction-cache locality was also the goal of Blackwell [3], in his
work on optimizing TCP/IP stacks. He showed that by processing
several packets in a loop at every layer, one could induce better
reuse of the corresponding instructions.

Cache-conscious data placement has been used to optimize the
caching behavior of generic programs [4, 5, 6]. These works use
program analysis and profiling information to efficiently arrange
objects in memory, and fields within objects. While the goal of
these efforts is to reduce the number of cache misses in generic
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programs, our work focuses on the specific problem of reducing
data cache misses in concurrent programs. Specifically, although
such data placement can be beneficial for a certain number of object
instances, it does not address the situation in which the number of
these instances is multiplied as a result of increasing concurrency.

Rajagopalan ez al. have considered the problem of improving
the performance of event-driven programs in general [19]. As this
class of programs includes programs such as GUIs that depend
heavily on user interaction and are thus highly non-deterministic,
their approach relies on dynamic profiling to identify commonly
occurring event-handler sequences rather than the static analysis
used in our approach. This reliance on dynamic profiling implies
that they can only optimize synchronous events, as it is only in
this case that there is guaranteed to be a connection between two
event handlers that occur in sequence. In contrast, our approach is
independent of whether events are synchronous or asynchronous.
The kinds of optimizations performed are also quite different, as
they consider primarily optimizations in the call-and-return inter-
face between event handlers such as function inlining, whereas we
consider cache behavior. These optimizations are orthogonal, and
applying both kinds of optimizations to servers that raise many syn-
chronous events could yield further speedups.

Finally, the last body of related work optimizes concurrent pro-
grams (both event-driven and thread-based) through intelligent re-
source management. SEDA [24] and Capriccio [23] use resource
monitors to implement resource-aware scheduling. These monitors
are installed in various stages, and periodically sample the level of
utilization of CPU, memory and file descriptors. The scheduler uses
the values of resource consumption at these monitors to favor the
scheduling of stages that free resources. Although this policy im-
proves overall performance by de-prioritizing resource bottlenecks,
it does not expressly go to improve caching behavior.

7. Conclusion and Future Work

‘We have presented an optimization framework to remove the domi-
nant bottleneck of memory accesses from event-driven servers. Our
framework includes a novel memory allocator that compacts the
program’s working set in a fixed region of memory, restricting it
to the L2 cache, and a scheduling strategy that coordinates with
the allocator to ensure that the scheduling of tasks in the server re-
spects these constraints. A set of program analysis tools has been
implemented to apply our optimizations.

We have applied our approach to the five test programs to
evaluate the applicability of our work. Benchmarking the TUX and
thttpd web servers has shown that data-cache misses are reduced
by up to 75%, and the overall throughput of the server increases by
up to 38%.

As future work, we would like to explore techniques to scale
event-driven servers to multiprocessors [25] in the context of our
optimizations. We are also working on a system to encode specific
concurrency strategies as objective functions when configuring the
Stingy allocator. Finally, we are working on a framework to inte-
grate the Stingy allocator into thread and process-based servers.
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