Creating virtual “soft” devices with User-mode Linux

Sapan Bhatia Laurent Réveillere

LaBRI/INRIA
ENSEIRB
1 Ave. du Dr. Albert Schweitzer
Domaine Universitaire
33400 Talence, FRANCE
{bhatia,reveillere}@labri.fr

Abstract

Developing device drivers can be highly tedious as it entails direct interaction with
hardware devices, which are difficult to analyse in trying to find the cause of unexpected
behaviour. User-mode Linux (UML) [3, 4] simplifies this task by allowing developers to
test and debug their device drivers in user-space. In this paper, we describe a systematic
approach to create virtual soft devices using UML for the purpose of testing device drivers
while they are still in the stages of development. Soft devices run as user-space processes
and can have a GUI interface. We have used the existing emulation capabilities of UML
and extended them by adding some of our own. We have designed a language named
Saint to specify soft devices, and implemented a virtual coffee-machine soft device as a
proof of concept.

1 Introduction

Device drivers are a key component of operating systems. They insulate application de-
velopers from the details of underlying hardware, thus implementing the mechanism of the
software interface with the device. The use of this mechanism, or the actual policies are left
to application developers. Writing device drivers is a highly rigorous task especially when
considering hardware operating code (i.e. code interacting with hardware). This layer of code
is low level and known to be error prone. This is aggravated by the fact that minor errors
can be expected to have disastrous effects on the system, as hardware devices are not robust
to erroneous code.

It is thus imperative that device drivers be thoroughly tested in a mock test environment
before they are actually made to interact with real hardware. User-mode Linux (UML) [3, 4]
provides such an environment by running the Linux kernel in user space. This means that
device drivers are executed in user context, reducing the penalty of faulty code. Instead
of system crashes, faulty device drivers cause exceptions in the UML kernel, which causes
the UML processes to terminate. Device driver developers can also make use of user-space
libraries and applications for extensive logging and debugging.

UML can also be made to emulate I/O memory and interrupts. Files on the host system
can be mapped into UML as I/O memory. Similarly, SIGIO signals can be used to generate
interrupts inside UML. This suggests that one should be able to emulate a complete device,
and use the emulated device to test and experiment with a device driver. One of the things
that UML lacked in this respect was the ability to emulate I/O port memory. We have
implemented I/O port emulation for UML, which is to be merged into the UML tree in the
mainline Linux kernel. Apart from this, we modified the timer modules for more precise
timing, as device drivers often rely on it, and the interrupts sub-system to be able to pass a
file to UML so that device drivers could transparently register IRQ handlers. This file would
be used to generate interrupts inside UML.

In this paper, we show how one can use these emulation capabilities of UML to create
virtual soft devices to be used to test device drivers. Such devices run as user-space processes
and can have GUI front ends to display register states and give information about the oper-
ation of the device interactively. We also envisage this concept to be used to profile actual
devices. A software implementation of a real hardware device can be used to analyse possible
settings and configurations by subjecting the device to real application loads. I.e. processes in
UML could use the device oblivious of the fact that it is emulated, and the process emulating
the device could gather valuable information from the work load. To simplify the creation of
soft devices, we have designed a language named Saint to specify them. Saint is a Domain
Specific Language (DSL) [?] that generates stubs used in the device implementation.

To illustrate the concept of soft devices, we have implemented a conceptual device, a
coffee machine, as a soft device and written a device driver to control it. The coffee machine
application runs on the host machine and has a GUI interface. Within UML, the coffee
machine can be manipulated using port memory and hardware interrupts. This device has
already been used in a senior year device drivers course.

In Section 2, we give a brief overview of User-mode Linux. In Section 3, we outline how we
have emulated hardware resources to create soft devices. In Section 4, we discuss the possible
uses of soft devices. In Section 5, we describe our coffee machine device, which we use as an
example while outlining the procedure to create and use soft devices. In Section 6, we detail
the process of creating and using a soft device and in Section 7 we discuss how device drivers
access it from UML. Finally, in Section 8, we describe Saint, a language we have designed to
specify soft devices and simplify the process of their development.

2 User-mode Linux

User-mode Linux is a port of the Linux kernel that runs on Linux in a set of processes. The
result is a user-space virtual machine using simulated hardware, constructed from services
provided by a Linux kernel running on hardware (a host kernel). A Linux virtual machine
is capable of running all of the applications and services available on the host architecture.
Instead of a hardware architecture, as is usual, UML uses the system call interface of the
Linux kernel as its underlying hardware interface. The code that implements this is under
the arch interface of the Linux kernel. The rest of the kernel is an unmodified, full-fledged
Linux kernel with all its features including scheduling, memory management and dynamically
loaded modules.

UML, like the actual kernel, distinguishes between a privileged kernel mode in which only
trusted code runs and a non-privileged user mode in which operations are arbitrated before

being executed. This is done using the ptrace interface to intercept system calls. Thus,
system calls issued in kernel context are executed directly without any arbitration, while
system calls issued in user context are intercepted by the UML kernel, which annuls them on
the host kernel and emulates them. Virtual memory is implemented by treating a file on the
host system as a pool of physical memory. The virtual memory system in the Linux kernel
then uses this pool of physical memory as usual. When a page needs to be mapped into
virtual memory, a corresponding “physical page” in the file is mapped into an appropriate
spot in the virtual memory in UML. UML implements I/O device interrupts with SIGIO0, page
faults using SIGSEGV and timer interrupts using STGALRM.

3 Emulation of hardware resources

In this section, we discuss the emulation of hardware resources, which is used extensively in
soft devices. Of the resources that are emulated, I/O memory emulation was fully imple-
mented when we started this project, interrupt emulation needed modification and I/O port
emulation needed to be implemented completely.

3.1 I/O memory emulation

I/O memory is the main mechanism used by device drivers to communicate with devices.
UML has support for I/O memory emulation. This means that a host file can be speci-
fied as an I/O region in the UML kernel, so that drivers can locate it and use it as de-
sired, just as they would use physical memory. If UML is executed with the argument
iomem=softiomem,/tmp/softiomem, then a driver can locate the corresponding memory area
in UML using the find_iomem routine as follows.

device_memory = (void *) find_iomem("softiomem", &iomem_size);

This is used by soft devices to make their device memory and memory mapped registers
accessible to the device driver.

3.2 Interrupt Emulation

In UML, interrupts are emulated using signals and in particular, the SIGI0 signal. Every file
descriptor corresponds to a different IRQ. Interrupt handling in UML is a bit more tedious
than on a host kernel. Other than requesting an IRQ and handling interrupts, drivers must
also manage the files which will be used to deliver signals. They must also disable the
corresponding file descriptor while the interrupt is being handled and re-enable it once it has
been handled. This is undesirable when device drivers are being tested, as they are intended
to run on the host kernel, and should run under UML as is. To make this possible, we made
this process transparent by factoring out the code that handles files and enables and disables
file descriptors. For the latter, we used the irq_desc_t interface, which is invoked at various
stages of handling an interrupt.

3.3 I/0 port emulation

We had to implement I/O port emulation since it did not exist in UML to begin with. Under
Linux, processes gain access to I/O ports by using the iopl and ioperm system calls. Every

time an I/O request is executed by a process without having done so, an exception is generated
by the processor. This exception is relayed to the offending process as a SIGSEGV signal with
information such as the fault address, the fault type etc.. We intercept such exceptions, nullify
them and go on to interpret the faulting instruction i.e. the I/O call. We apply the result of
the instruction to an area of memory we share with the soft device. The soft device is then
sent a SIGUSR1 signal to trigger associated side effects. Finally, we implemented the iopl
and ioperm system calls to manage access permissions to ports in UML.

4 Usage scenarios for soft devices

Although so far, we have only used our work for teaching a device drivers course in which
students were expected to write a device driver for a soft device, we envisage many diverse
uses of soft devices:

o Making device drivers more robust. By implementing the behaviour of a device, fully
or partially, one can test device drivers in a convenient way. The coffee machine device
we have implemented illustrates this. Furthermore, since processes are far more flexible
than actual devices, they can be manipulated to create test cases for device drivers which
would not be possible to create with real devices. Sometimes, unfavorable conditions
may be created by implementing deviant or inconsistent behaviour in the soft device.
Unified device drivers for a range of models of a particular device can also be tested in
this way, by configuring the soft device to behave specific to particular models.

e Teaching device drivers and operating system concepts. Since soft devices are processes
that can be restarted when they crash, and made to display an error condition instead
of indicating it with a total system freeze, they are especially well suited to the purpose
of teaching how to write device drivers.

e Profiling hardware devices. Since soft devices can be subject to processes run inside
UML, they can be implemented in a way to collect critical information from real-world
situations. This goes much beyond simulations, as it makes use of real-world work loads.
In an extreme case, it might actually be possible to implement a device in circuit detail
so as to record information pertaining to hardware modules and logic elements.

5 The coffee machine device

Je suis une machine a’' cafe!

GLASS,1 UNITS OF SUGAR;
Do Misc Damage| Unplug power cofleamef machine| Extract Motherb oard | Heat on a bonfire

Registers

L C8R: |0
SR 0 ACC: |0
0 DR: |20

Figure 1: The coffee machine

We have implemented a conceptual device, a coffee machine as a soft device. On the host,
the device is a process with a GUI interface (as show in figure 1. Inside UML, this device
is accessed using five registers, which can be used to invoke different operations. These are
illustrated in Table 1.

Address RD WD
0H Data Waiting Register (DWR) Command Register (CR)
1H Interrupt Status Register (ISR) | Reserved
2H Hardware Status Register (HSR) | Reserved
3H Container Status Register (CSR) | Reserved
4H Accumulator (ACC) Reserved
5H Reserved Indexed Data Register (IDR)

Table 1: Direct Registers

As an example to show how the registers are used, the command register is described
below.

7 6 5 4 3 2 1 0
| AS2 [AS1 | ASO | PS1 | PSO | IAD2 | IAD1 | TADO |

Bit Symbol Description
D2 - D0 | TADO - TAD2 | Index Address: These three bits select which indirect register is to
be accessed through the Indezed Data Register (IDR).
D3 - D4 | PSO - PS1 Push Select: These two encoded bits control Push operations.
PS1 PSO
0 0 No Operation
0 1 Push a glass
1 0 Push a stirrer
1 1 Push items
D5 -D7 | ASO - AS2 Action Select: These three encoded bits control actions other than

a push.
AS2 AS1 ASO
0 0 0 No Operation

0 0 1 Eject the glass

0 1 0 Reset the machine
0 1 1 State Request

1 0 0 Lock

1 0 1 Unlock

1 1 0

Data Reading Acknowledgment
1 1 1 Reserved

The coffee machine also generates interrupts on certain events, such as error conditions
and during state queries, to indicate that new data is available. The type of the interrupt is
specified by the interrupt status register:

7T 6 5 4 3 2 1 0
[DW[— [— | — [CNE [OVW | HWF | OPC |

5

Bit | Symbol Description

D7 | DW Data Waiting: This bit is set when a byte is available in the Accumu-
lator register (ACC). This bit is low when no more bytes are available
through the Accumulator register.

D6 | Reserved | Reserved

D5 | Reserved | Reserved

D4 | Reserved | Reserved

D3 | CNE Container Empty: Indicates that at least one container is empty.
The Container Status Register (CSR) records status of the various con-
tainers. This bit is cleared by the coffee machine itself.

D2 | OVW Overflow: Set when no more items can be accomadated in the order.
IL.e., the dispensing compartment is full.
D1 | HWF Hardware Failure: Indicates a hardware failure. The Hardware

Status Register (HSR) allows one to identify the cause of the failure.
This bit is cleared by the coffee machine itself.

DO | OPC Operation Completed: This bit is set by the coffee machine when
an operation is completed. This bit is cleread when an operation is
triggered. Note that no operation must be triggered when this bit is
high. Otherwise, the result is unpredictable. However, a hardware
failure interrupt should normally be generated.

6 Creating and using soft devices

To create a soft device, we first need to map an area of memory which we are going to share
with UML. This can be done with the mmap system call as follows:

device_resources.base_address =
(unsigned char *)mmap (NULL, PAGESIZE, PROT_READ | PROT_WRITE,
MAP_SHARED,
device_resources.fd, 0);

Where device_resources.base_address is the base address of the shared mapping and
device_resources.fd is the file descriptor specifying the file to be passed to UML, so that
it can be mapped inside UML. Once we have this memory area, we can assign a layout for it,
depending on the specification of the device we are implementing. For example, for the coffee
machine, we lay out the registers starting from offset 0:

reg_cr = (union CR *) device_resources.base_address;

reg_isr = (union ISR *) ((unsigned int) (device_resources.base_address) + 1);
reg_dwr = (union DWR *) ((unsigned int) (device_resources.base_address) + 1);
reg_hsr = (union HSR *) ((unsigned int) (device_resources.base_address) + 2);
reg_csr = (union CSR *) ((unsigned int) (device_resources.base_address) + 3);
reg_acc = (__uint8_t *) ((unsigned int) (device_resources.base_address) + 4);
reg_idr = (union IDR *) ((unsigned int) (device_resources.base_address) + 5);

We then install a handler for SIGUSR1, so that when the state of the registers changes, we
can perform the necessary action.

To be able to generate interrupts, we need to create an object which can be used to dis-
patch SIGIO signals to UMLL. In the coffee machine, and in Saint, we use unix domain sockets.
We create a socket as follows:

sock = socket(PF_UNIX, SOCK_DGRAM, 0);

addr.sun_family = AF_UNIX;

snprintf(addr.sun_path, 5, "}5d", getpid());

err = bind(sock, (struct sockaddr *) &addr, sizeof(addr));

We generate interrupts by writing to or reading from the socket:

char c=’1";
err = sendto(fd, &c, 1, 0, (struct sockaddr *) &sun, sizeof(sun));

I/O memory can be implemented in soft devices in much the same way as I/O ports are,
with the difference that there are no side effects associated with reading or writing to I/0O
memory, and the device must poll for changes.

7 Accessing soft devices from User-mode Linux

Device drivers for soft devices can now be written in UML just as they would be on the host
system. Registers can be accessed using I/O instructions, for example:

void push_milk()

{
reg_idr.bits.IDO=1;
reg_cr.bits.PS=3;
outb(reg_cr.byte,ADD_CR);
down_interruptible(&op_sem);
}

Device interrupts can be intercepted by registering an interrupt handler, as shown below:

result = request_irq(CAFE_IRQ, cafe_interrupt_handler,
SA_INTERRUPT, "cafe", (void *) last_status);
User processes in UML can use the ioperm and iopl system calls to gain access to a range
of ports, and invoke the I/O instructions, in and out to read and write them as usual.

8 The Saint language

Before starting on a new language, we had the option of using Devil [6, 7], a language used
to write device drivers. However, we decided that we required only a subset of Devil, and had
some additional requirements for which we would require extensions. Thus, we designed the
Saint language. The purpose of the Saint language is to be able to generate code for common
tasks in the implementation of soft devices. The Saint stub generator also produces code to
perform consistency checks at run time depending on specified properties. For example, if a
port is defined as read only, the generated code will generate an error condition if it is written
to.

Figure 8 shows an example device specification in Saint. The ports section defines 80
ports, addressed from 0 to 100, and specifies their properties with respect to whether they
can be read or written to. The read, write and none properties can be specified for one or
more ports, or one or more bits for a particular port. This scheme is followed in the definition
of I/O memory, registers and event handlers as well. For example, the second line in this
section defines the port at offset 5 as readable and writable. The mem section follows the same

device example {
ports (0..80) {

(0..4) read;

(5) read,write;

(6..79) read;

80) A
(0..3) read;
(4..7) write;

}
mem (0..100) read,write;

registers {

ports {
(0) ACC;
(1) ISR;
@) {
(0..1) STATUS;
(2..7) ERR;
}
T
}
handlers {
ports {
(0..4) handle_first_four_ports(ACC,ISR,STATUS,ERR);
80) {
(2..7) handle_error(ERR);
}
}
faults handle_fault;
}

semantics as the ports section, and is used to define I/O memory. In this case, it defines 100
memory locations addressed from 0 to 100, and that they can be read or written to.

The registers section defines named registers which will be passed to event handlers
defined in the handlers section. Registers can span a range of ports, or a range of bits in
one port. For example, the fifth line defines the register ERR to span 6 bits (2-7) of port 2.
The handlers section defines a set of handlers for when ports are read and written to. The
first line of this section specifies that the handle first four ports function be called with the
registers ACC, ISR, STATUS and ERR as arguments. The last line of this section specifies
that the handle_fault function should be called in case of faults, such as writes to read-only
ports or memory.

Figure 8 gives an example of generated stub code. The handle_first_four_ports func-
tion will be called when one of the first four ports is written to, after some consistency checks.
Registers are maintained internally as structure following the C bit notation, where properties
are defined for bits. For example, for port 2, we have:

struct __p2 {
unsigned int STATUS : 2;
unsigned int ERR HICH
1

int handle_first_four_ports(unsigned int &ACC, unsigned int &ISR,
unsigned int &STATUS, unsigned int &ERR) {
/* £ill in your code here */

9 Related work

Although the testing of device drivers is an important concern in most Operating Systems,
generic tools and methodologies to do this are surprisingly few. Microsoft provides one such
set of tools [2] to perform some performance and compatibility tests on device drivers for
Windows.

Devil [6, 7] is a language for generating device driver stubs in a safe and efficient way. Blue
Water Systems’ WinDK [5] and Compuware’s NuMega [1] are other tools to generate device
driver stubs. Saint on the other hand, generates stubs for soft devices, which encapsulate the
semantics of the device in a limited manner.

10 Conclusion and Future work

We have implemented a limited framework for soft devices. We intend to build on this frame-
work, partly by extending the Saint language to be able to define more complex interfaces,
such as PCI, ISA, USB etc.. In the context of Saint, we would also like to be able to add
more functionality so as to be able to describe entire soft devices instead of only interfaces to
generate stubs. We would also like to implement some real soft devices to better understand
some of the topics we have broached, such as profiling hardware devices. Finally, we would
like to explore possibilities of a systematic tool set to be able to evaluate the efficiency of
device drivers, and compare the performance of different device drivers using soft devices.

11 Acknowledgments

We would like to thank Jeff Dike, the creator of UML, for helping us resolve some UML
related issues during the course of this project and Brian Code and Hedi Hamdi for their
useful comments.

References

mpuwar rporation. Driverwork’s user guide. www.numega.com.
1] Co are Corporation. Driverwork’s use de €ga.co

[2] Microsoft Corporation. Windows device driver development kits.
http://www.microsoft.com/whdc/ddk /winddk.mspx.

[3] Jeff Dike. User-mode linux. In Proceedings of the Ottawa Linuz Symposium, 2001.

[4] Jeff Dike. Making linux safe for virtual machines. In Proceedings of the Ottawa Linuz
Symposium, 2002.

[5] Blue Water Systems Inc. Windk users manual. www.bluewatersystems.com.

[6] F. Mérillon, L. Réveillere, C. Consel, R. Marlet, and G. Muller. Devil: An IDL for
hardware programming. In Proceedings of the Fourth Symposium on Operating Systems
Design and Implementation, pages 17-30, San Diego, California, October 2000.

[7] L. Réveillere and G. Muller. Improving driver robustness: an evaluation of the Devil
approach. In The International Conference on Dependable Systems and Networks, pages
131-140, Goteborg, Sweden, July 2001. IEEE Computer Society.

10

