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Résumé

Cette thèse présente un ensemble de techniques qui permettent l’optimisation des
performances des sysèmes réseaux modernes. Ces techniques reposent sur l’analyse
et la transformation des programmes impliqués dans la mise en óeuvre des protocoles
réseaux. La première de ces techniques fait appel à la spécialisation de programmes
pour optimiser des piles de protocoles réseaux. La deuxième, que nous avons nommée
spécialisation distante, permet à des systèmes embarqués limités en ressources de
bénéficier de la spécialisation de programmes en déportant à travers le réseau les
opérations de spécialisation à une machine distante moins limitée. La troisième pro-
pose un nouvel allocateur de mémoire qui optimise l’utilisation des caches matériels
faite par un serveur réseau. Enfin, la quatrième technique utilise l’analyse de pro-
grammes statiques pour intégrer l’allocateur proposé dans un serveur réseau existant.
On appelle ces techniques optimisations compilateur parce qu’elles opèrent sur le
flot des données et du contrôle dans des programmes en les transformant pour qu’ils
fonctionnent plus efficacement. Les programmes réseaux possèdent une propriété fon-
damentale qui les rend faciles à manipuler de cette manière: ils sont basés sur une
conception qui les organise en différentes couches, chacune englobant une fonctionalité
bien définie. Cette propriété introduit dans le code des bloques fonctionnelles bien
définis qui sont équivalents aux procédures et aux fonctions d’un langage généraliste.

Dans la première partie de cette thèse, la spécialisation de programmes est utilisée
pour créer différentes configurations de ces bloques qui correspondent à différents
contextes d’utilisation. Au départ, chacun de ces bloques fonctionnels, tels que ceux
utilisés dans le protocole TCP et dans le routage des trames, est conÃ§u et développé
pour fonctionner dans des conditions variées. Cependant, dans certaines situations
spécifiques (comme dans le cas d’un réseaux haut-pérformance sans aucune conges-
tion), certaines caractéristiques (comme les algorithmes du control de congestion de
TCP) n’ont pas d’utilité. La spécialisation peut donc instancier ces bloques de code
en éliminant les parties non-necessaires et en appliquant des transformations du flot
des données et du control pour rendre plus efficace leur fonctionnement. Une fois que
ces bloques individuels sont rendus spécialisables, on bénéficie de l’encapsulation pro-
pre d’une pile de protocole en couches. Chacune de ces couches peut être spécialisée
pour obtenir une pile de protocole spécialisé.

Car cette fa con d’utiliser la spécialisation de programmes est nouvelle et nécessite
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un style de programmation bien différent par rapport à ce qu’il existe : il faut
de l’assistance pour les développeurs d’applications sous forme de bibliothèques et
d’interfaces de programmation. De plus, la spécialisation a un inconvénient: il est
très gourmand comme processus et donc ne peut pas être invoqué arbitrairement. Ces
besoins sont traités dans la deuxième contribution de cette thèse, La spécialisation
distante. La spécialisation distante est un ensemble de méchanismes et d’interfaces
dévéloppés comme des extensions du noyau d’un système d’exploitation. Ces exten-
sions permettent de déporter le processus de la spécialisation à travers le réseau sur
un système distant.

La spécialisation distante fournit les avantages de la spécialisation dynamique de
programmes à des systèmes qui en bénéficie potentiellement le plus, c’est à dire, les
systèmes embarqués. Traditionnellement, ces systèmes ont utilisé du code optimisé
à la main. Cependant, produire ce code implique une procédure lente et produit
des erreurs dans le code résultant. De plus, cette procédure n’arrive pas à exploiter
des opportunités d’optimisation sophistiquées qui peuvent être identifiés facilement
par les outils automatisés. La spécialisation distante permet d’obtenir un tel code
optimisé automatiquement à l’exécution, une fois que le système est préparé et rendu
spécialisable. Une application peut dans ce cas demander des versions spécialisées
des composant OS correspondant à des contextes particuliers à travers le réseau.
En suite, on considère les serveurs réseaux. La spécialisation optimise effectivement
du code qui est limité en performance par l’exécution des instructions sur le pro-
cesseur, en éliminant des instructions non nécessaires et en rendant plus efficaces les
instructions restantes. Mais pour les applications qui ont des inefficacités plus im-
portantes, la spécialisation est inefficace, car malgré des améliorations importantes
au niveau des instructions, la partie améliorée étant petite, les gains globaux sont
insignifiants. Le facteur traditionnel qui limite les systèmes réseaux en performance
est celui des opérations I/O. Par contre, les systèmes réseaux modernes sont main-
tenant équipés de suffisamment de mémoire. Donc, les opérations I/O ne constituent
plus le goulot d’étranglement. A l’inverse, l’accès à la mémoire occupe maintenant
cette position. Aujourd’hui, les accès à la mémoire coûtent jusqu’à 100 fois plus que
d’autres opérations notamment la manipulation des registres. Cette thèse propose un
nouveau allocateur de mémoire qui s’appelle Stingy Allocator pour minimiser le nom-
bre de défauts cache dans un serveur orienté événement. La notion de bloques facilite,
à nouveau, l’application de notre stratégie d’optimisation. Les bloques d’exécution
dans un serveur orienté événement s’appelle des étapes et peuvent être identifiées et
analysées par un outil automatisé une fois déclaré par un programmeur sous forme
d’annotation pour le code. L’allocateur Stingy dépend du fait que ces étapes peuvent
s’exécuter dans des ordres différents sans avoir un effet important sur la sémantique
globale de l’application. Combiné à une nouvelle approche d’ordonnancement qui
arrange différentes étapes pour limiter l’utilisation de la mémoire, Stingy Allocator
assure que toute la mémoire allouée par le serveur soit bornée et qu’il reste dans les



xii

caches du système.
Un ensemble d’outils a été développé pour intégrer Stingy Allocator dans des

programmes existants. Ces outils ont été utilisé pour optimiser des applications ex-
istantes. Avec l’aide de ces outils, un programmeur peut modifier un serveur réseau
pour qu’il se serve de Stingy Allocator sans comprendre intimement le fonctionnement
de celui-ci.

Chacune des parties décrites au-dessus a été évaluée dans le contexte des pro-
grammes existants. La spécialisation des piles de protocole a été évalué rigoureuse-
ment sur la pile TCP/IP du noyau de Linux. Celle-ci a aussi été étudiée dans le
contexte de la pile TCP/IP de FreeBSD. La spécialisation distante a été utilisée
pour spécialiser dynamiquement la pile TCP/IP de Linux ainsi que le serveur web
TUX. Nos expériences ont démontré des réductions importantes dans la taille du code
résultant (amélioré d’un facteur de 2 à 20) et des améliorations appréciables en terme
de performance, les gains étant entre un facteur de 1.12 et 1.4.

Évolution de l’étude

Le but de cette thèse à l’origine était d’utiliser la spécialisation pour optimiser
toutes les fonctionnalités réseaux d’un système d’exploitation. Le besoin de perme-
ttre aux applications d’invoquer la spécialisation dynamiquement a entrâıné la mise
en óeuvre de nouvelles capacités dans le système d’exploitation qui permettent au
spécialiseur d’accéder et de reprogrammer les fonctionnalités dans le noyau. Deux
mécanismes ont été conÃ§us et développés pour répondre a ce besoin. Le premier
consiste à donner au spécialiseur l’accès direct à la mémoire du noyau. Par con-
tre, cette approche a lieu sur le système local qui fait qu’il est lent. Le deuxième
mécanisme consiste à émuler le système qui a besoin de la spécialisation sur un serveur
de spécialisation à distance. Cette technique est nommé La Spécialisation Distante
et a été adopté par la suite.

Des mois d’expériences avec notre infrastructure de spécialisation, notamment
sur les ordinateurs basés sur l’architecture Titanium nous a amené à la conclusion
suivante. Au delà des piles de protocoles, les invariants de la spécialisation tels qu’ils
ont été exprimés traditionnellement ne sont pas assez puissants pour optimiser les
coûts les plus importants dans la mise en oeuvre des protocoles réseaux, car ces
coûts n’impliquaient pas l’application des instructions aux valeurs stockés dans des
registres, mais par contre impliquaient la partie de l’effort consacrée à la récupération
des valeurs de la mémoire. On a essayé de résoudre ce problème par la conception d’un
langage dont le but était d’intégrer des serveurs réseaux dans le noyau d’un système
d’exploitation. Cette stratégie rendrait les données manipulées par l’application plus
compacts et donc améliorerait son comportement envers les caches. La suite de nos
expériences a montré qu’il y avait une forte correspondance entre la concurrence des
requêtes dans un serveur et son comportement vis-à-vis du cache.
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Ces expériences ont montré que trois catégories différentes des serveurs réseaux
ont subit une dégradation marquée en performance correspondante à l’augmentation
progressive de la concurrence de la charge. On a d’abord essayé de nous servir des
divers allocateurs de mémoire (tel que Freelists, Bump-pointer, Buddy). Après avoir
évaluer plusieurs de ces allocateurs, on a conÃ§u l’allocateur Stingy Allocator qui
implique explicitement l’ordonnancement des requêtes traités par un serveur - et
donc qui implique la concurrence des requêtes. Cet allocateur a d’abord été évalué
dans le contexte d’un serveur expérimental qui s’appelle Mockserver dont l’allocateur
a amélioré la performance jusqu’à 4 fois. Dans des conditions plus réalistes, cette
amélioration se traduit par environ 40% de gains en performance.

Intégrer Stingy Allocator dans un programme impliquait des manipulations mécaniques
du code source d’un serveur. Spécifiquement, le programmeur avait besoin d’étudier
l’usage de mémoire d’un serveur sous forme des séries d’allocations et de désallocations
à travers les différentes étapes du programme, et d’utiliser éventuellement le résultat
de cette étude pour configurer l’allocateur et de modifier le programme pour qu’il
utilise ce nouvel allocateur. Afin d’automatiser cette activité, on devait développer des
outils qui identifieraient les différents éléments du programme, tels que les différentes
étapes et les requêtes pour allouer de la mémoire. Comme ce processus aurait été diffi-
cile à réaliser dans le serveur orientés processus, on a choisi l’architecture de serveurs
orientés événement pour ce travail. Les serveurs orientés évènement sont devenus
le standard pour les serveurs haute-performance. Donc, nos outils d’analyse et de
transformation des programmes oèrent sur de tels serveurs.

Conclusion et travail à venir

En général, les contributions de cette thèse vont faciliter le développement des
piles de protocoles et des serveurs haute-performance à partir d’une base du code
existant. Dans son état actuel, le travail présenté dans cette thèse a aussi quelques
faiblesses qui nécessite de poursuivre la recherche dans ce sens..

Ces faiblesses comprennent l’effort important impliqué dans l’activité de rendre un
module spécialisable, couplé avec la difficulté d’entretenir les annotations au long de
l’évolution des logiciels et la limitation de la deuxième partie à des serveurs orientés
événement.

Malgré ces faiblesses, les principes centraux de ces composants ont été rigoureuse-
ment évalués. La spécialisation des piles de protocoles a été utilisée dans un projet
de recherche pour optimiser les machines virtuelles à Georgiatech. L’émulation d’un
système sur un serveur distant a été réutilisé dans un contexte à part. Les outils
développés pour intégrer Stingy Allocator ont été appliqués à des systèmes de mon-
itorage des réseaux. Le travail à venir au long terme s’agira de la conception d’un
spécialiseur qui nécessite moins d’annotations dans le code, et d’étendre la réalisation
de Stingy Allocator pour qu’il puisse s’appliquer à tout un système d’exploitation.
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Summary

This dissertation describes techniques that can optimize the performance of modern-
day network systems. They are applied through the analysis and transformation of
programs that implement network protocols. The first of these techniques involves
the use of Program Specialization, a well-established code-optimization approach,
to optimize network protocol stacks. The second, Remote Specialization makes spe-
cialization amenable to resource-limited embedded systems by deferring it over the
network to a more capable system. The third technique revolves around a novel
memory manager introduced in this thesis and optimizes a network server’s use of
the underlying hardware caches. Finally, the fourth technique uses static analysis to
integrate the proposed memory manager with an existing network server.

Improving the performance of network systems is one of the most researched areas
in the domain of Operating Systems and Networking. It has led to the publication of
hundreds of research papers and over a score of PhD theses over the past decade. In
spite of the large body of available literature, it is still the focus of intense study. The
author’s intuition of the cause of this phenomenon is as follows. In the course of the
past two decades, network technology has mutated at every level from the transmis-
sion medium to the manipulation of application-level protocol messages. Each muta-
tion combined with parallel mutations in computing hardware and changing trends
in Internet commerce, has altered the problematic of network-system optimization,
consistently raising the need for further research.

Given the highly dynamic nature of this domain, any optimization that involves
removing pathological inefficiencies in network software is likely to be outdated by the
next evolution in network technology and computer architecture. In contrast, the goal
of this thesis is to study the performance of network systems and build optimizations
based on a set of tenets that we hope will outlive a sizable number of evolutions
and mutations in computer and network systems. These tenets are inspired by two
principle properties of network software: their active manipulation of memory objects
and their layered structure.

The first tenet is based on the mismatch between the memory latency and com-
pute latency of modern-day processors. The computational activities carried out in
most network applications are lightweight and do not involve complex mathematical
operations, making the overhead of memory latency all the more significant. We will
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demonstrate that by strategically managing the behaviour of a server with respect
to the underlying hardware caches, the number of memory accesses can be reduced
drastically, boosting the performance of a network server. The main mechanism that
drives these changes is implemented through the co-design of a memory manager and
a scheduling algorithm. The memory manager is novel, and a contribution of this
thesis. The scheduling algorithm is a variant of one recently introduced in the litera-
ture. The combination of the scheduling strategy and memory manager is integrated
into an existing server using a set of program analysis tools, developed in the context
of this thesis.

The second tenet involves the layered complexity of network software. Implemen-
tations of protocol stacks are highly generic owing to their development as components
of generic operating systems. These implementations often evolve over several years
through which they gain features, performance and stability, but at the cost of added
complexity. The natural solution to optimizing such protocol stacks has been to re-
design them in a way that allows a programmer to collapse them at the time they are
used, removing unnecessary functionalities and layers. While this approach has been
shown to yield compelling results in terms of the performance and the reduced size
of the resulting code, it is impractical to apply to existing, mature implementations.
In this thesis, we use program specialization to transform generic implementations of
protocol stacks into efficient, specialized implementations. This process is supported
by a novel remote specialization infrastructure that allows the resource-intensive ac-
tivity of program specialization to be carried out on a remote specialization server.

The individual solutions developed in this thesis share a common theme: they are
implemented as compiler optimizations. Coupling them with traditional approaches
such as profile-guided optimization and efficient OS primitives that have issued from
the industry and research will yield network applications whose performance ap-
proaches the theoretical upper limit.



xvi

Acknowledgments

I acknowledge the following persons for their direct or indirect contribution to the
research described in this dissertation.

Charles Consel, my PhD advisor, for initially motivating most of the problems
that have been tackled in this thesis, and for steering my research.

Charles Consel and Julia Lawall, who were my guides, and have contributed ex-
tensively to the ideas, approach, organization and presentation of the work that is
described in this thesis.

Gilles Muller, Raymond Namyst and Marc Shapiro for their extremely useful and
constructive criticism of this thesis. Some of their suggestions have been incorporated
into this version, and some of their questions answered in the Appendix.

The Region of Aquitaine and INRIA for funding the work described in this PhD
thesis.

Claus Brabrand, Andreas Carlsen, Abhishek Kumar, Peter Mechlenberg and Cal-
ton Pu for contributing their ideas and opinions on various aspects of this work, and
for evaluating some of my own ideas when they were still premature.

Calton Pu and Gilles Muller for useful discussions that influenced the direction of
this work at many critical junctures. Jim Larus initially motivated the change from
program specialization to cache optimizations. Calton Pu helped develop the idea of
a specialization server. Gilles Muller motivated the use of event-driven servers in our
work.

Wilfried Jouve for editting the introduction in French
George Necula, Jeff Dike, Ingo Molnar. George Necula and the rest of the CIL

team for putting together a remarkable C-program analysis framework, and making
it publicly available. The CIL framework has been used extensively in the implemen-
tation of the tools presented in this thesis, Jeff Dike and the rest of the User-mode
Linux team for User-mode Linux. Parts of the implementation of user-mode Linux
were reused in the implementation of the remote specialization server. Ingo Molnar
for the design and implementation of TUX, which has been used as a test bed for
much of the work described in this thesis.

The Linux memory management team for having answered my queries on various
issues related to explicit cache management and superpages.

Antara Bhatia for proof-reading this thesis.
Laurent Burgy, Brian Code, David Cutullic, Abdelaaziz Elkaohlany, Hedi Hamdi,

Wilfried Jouve, Julien Lancia, Fabien Latry, Anne-Françoise LeMeur, Mathieu Mi-



xvii
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Chapter 1

Introduction

The performance of a network system is governed by the behaviour of a mul-
titude of interacting technologies, such as the signal transmission medium and the
underlying processor. The interaction between these technologies and the composi-
tion of their functions into high-level services is defined by network software. The
functionalities of network software are inherently intertwined with one another.1 The
interdependence between various functionalities makes it extremely difficult to im-
prove the performance of such software in a way that is both effective and widely
applicable.

Existing optimizations for network software mostly seek to overlap disk I/O with
computation to optimize the utilization of disk and CPU bandwidth. In recent times,
however, the amount of memory available on mainstream systems has increased man-
ifold, and as a result, disk access is no longer the dominant bottleneck in the func-
tioning of a network application. 2 This phenomenon has transferred the bottleneck
of operation to the execution of the instructions of the program and the manipulation
of data in the main memory.

Recent work has proposed several strategies to address these new bottlenecks,
such as the use of libraries and languages [10, 28, 31, 37] that can be used to rewrite
network software more efficiently than what is possible using low-level libraries and
general-purpose languages. Novel scheduling strategies have also been proposed to
make resource management more robust and improve cache efficiency [40, 71].

In this thesis, we leverage on the maturity of existing implementations that have
been under development for several years. We do so by designing holistic optimiza-

1For example, in most programs, memory management and I/O are implemented in fragments
of code that are scattered across various program modules, making them indistinguishable from the
overall application logic.

2Many websites, including Google’s servers [66] and the official site of the Olympic games run
entirely out of DRAM [62].
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(a) Protocol stacks

(b) Network servers

Figure 1.1: High-level view of the optimization framework. (a) Specialization of
protocol stacks. (b) Optimization of an event-driven network server.

tions that can be applied to existing network servers and network protocol stacks.
We demonstrate how an existing network protocol stack can be specialized with a
dramatic reduction in the code size and appreciable improvements in performance.
We also describe a technique that exploits the interdependence of memory manage-
ment and scheduling to optimize the cache behaviour of a network server. A new
architecture for specializing code on embedded systems also emerges from this work.
This architecture, which allows embedded OS modules to be specialized remotely, has
ramifications beyond components that are dedicated to protocol or packet processing,
and will apply to OS modules in general.

1.1 Overview: optimizations and system architec-

ture

We present optimizations for two classes of network software: network protocol
stacks and network servers. Figure 1.1 illustrates a high-level view of these optimiza-
tions. Our approach is divided into two phases: an analysis phase that identifies
optimization opportunities in the code and a transformation phase that leverages on
these opportunities and generates optimized code.

Figure 1.1(a) illustrates the process of network-protocol-stack specialization. In
the analysis phase, a Program Specializer [36] analyses the code annotated with de-
scriptions of the contexts in which it is foreseen to be used at execution time. These
analyses drive the generation of specialization templates [20]. When the concrete run-
time values of the specialization context become available, they are used to complete
these templates, resulting in specialized programs. These specialized programs are
then compiled using a full-fledged optimizing compiler, leading to specialized binary
modules that are drastically smaller in size and significantly more efficient than their
generic counterparts.
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The process of specialization is the most effective in the context of embedded
systems, since these systems impose the most stringent constraints on the use of the
CPU, disk and main memory. However, the activity of program specialization is
resource intensive, and impractical to carry out within these limitations. We address
this problem with an architecture that enables code to be specialized on a remote
specialization server that is better geared to this task than the low-end embedded
system for which specialization is destined. This activity is implemented by partially
emulating the target embedded system in a virtual machine on the specialization
server.

Next, Figure 1.1(b) depicts the optimization of an event-driven network server
using a kit of program analysis and transformation tools developed in this thesis:
The Broomstick optimizer. The analysis phase of the Broomstick optimizer studies
the memory-utilization behaviour of a network server. Then, guided by additional
information provided by the programmer, it generates a customized memory manager
that is adapted to the allocation and deallocation activities of the server. The trans-
formation phase of the optimizer automatically integrates the new memory manager
with the network server. Finally, the programmer trivially modifies the scheduler of
the server to receive feedback from the new memory manager. The feedback loop
between the memory manager and the scheduler enhances the performance of the
server by optimizing the use of the underlying hardware caches.

It is assumed, throughout this thesis, that the programs operated upon are written
using the C language. For network servers, we make an even stronger assumption:
that they are implemented using the event-driven paradigm. We have chosen this
paradigm in the concrete form of our work, since it has become the standard for
implementing high-performance servers, and is flexible so that it can be manipulated
by automated tools. Although the assumptions we make limit the scope of the present
work, the underlying concepts used, such as the co-design of a memory manager and
a scheduler, remote specialization and the specialization of generic protocol stack
libraries may be re-instantiated in a variety of environments.

1.2 Contributions

The main contributions of this thesis are in the area of optimizations dedicated to
network protocol stacks and network servers. These optimizations serve to improve
the performance of such programs and reduce the amount of memory and disk space
needed by them to operate. We also develop techniques to facilitate the process of
optimization through static analysis and a run-time system for dynamic optimization.

The specific techniques developed are:

• Protocol-stack specialization - The use of program specialization to exploit spe-
cific optimization opportunities that are inherent to protocol stacks [3, 6].
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• Remote specialization - An infrastructure that allows specialization of generic
systems modules to be performed on a system other than the one on which the
specialized code is to be executed [4]

• Memory-manager/Scheduler co-design - An algorithm including the design and
implementation of a novel memory manager that optimizes a network server’s
use of the hardware data and instruction caches [1, 2]

• The Broomstick Toolkit - A set of static analysis tools that integrate the pro-
posed memory manager into an existing network server [1].

1.2.1 Protocol-stack specialization

First, we present a technique to optimize libraries that implement network proto-
col stacks, such as the TCP/IP stack found in various OS kernels. Fast and optimized
protocol stacks play a major role in the performance of network services. This role is
especially important in embedded class systems, where performance metrics such as
data throughput tend to be limited by the CPU. It is common on such systems, to
have protocol stacks that are optimized by hand for better performance and smaller
code footprint. We propose a strategy to automate this process. Our approach uses
program specialization, and enables applications using the network to request spe-
cialized code based on the current usage scenario. The specialized code is generated
dynamically and loaded in the kernel to be used by the application.

The basis of our approach is the hypothesis that the layered design of protocol
stacks leads to specific optimization opportunities that can be concisely expressed as
specialization invariants. We have successfully applied our approach to the TCP/IP
implementation in the Linux kernel and used the optimized protocol stack in existing
applications. These applications were minimally modified to request the specialization
of code based on the current usage context, and to use the specialized code generated
instead of its generic version. Specialization can be performed locally, or deferred to
a remote specialization server. Experiments conducted on three platforms show that
the specialized code runs about 25% faster and its size reduces by up to 20 times.
The throughput of the protocol stack improves by up to 21%. The specialization
opportunities exploited have also been evaluated in the context of the TCP/IP stack
of FreeBSD.

1.2.2 Remote specialization

Next, we present a technique to bring specialization to embedded systems. Em-
bedded systems use hardware that is typically an order of magnitude less capable
(slower for processors and smaller in size for memory) than that on mainstream
workstations and servers. Before it is deployed, code on such systems is often tailored
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to reduce size and run-time overhead. Program Specialization is the perfect match
for the needs of this process: it is reliable, modular and allows previously applied
specialization scenarios to be reused. A specialization engine for embedded systems
must overcome three main obstacles: (i) Reusing existing compilers for embedded
systems. (ii) Allowing specialization to be launched on a system limited in CPU,
memory and storage space. (iii) Designing a specialization interface that can be used
to request the specialization of Operating Systems (OS) code.

We describe a specialization infrastructure for embedded systems that addresses
all of the above 3 problems. Our solution proposes: (i) Specialization in two phases
of which the former generates specialized C templates and the latter uses a dedicated
compiler to generate efficient native code. (ii) A virtualization mechanism that allows
programs to be specialized remotely. (iii) A set of library routines that can be invoked
by applications to request specialized versions of OS functionalitities. These functions
are implemented as system calls.

1.2.3 Memory-manager/scheduler co-design to improve server
performance

Event-driven programming has emerged as a standard to implement high-performance
servers due to its flexibility and low OS overhead. Still, memory access remains a
bottleneck. We present an optimization framework dedicated to event-driven servers,
based on a strategy to eliminate data-cache misses. We propose a novel memory
manager combined with a tailored scheduling strategy to restrict the working data
set of the program to a memory region mapped directly into the data cache. Our
approach exploits the flexible scheduling and deterministic execution of event-driven
servers.

Applying our optimizations to industry-standard web servers has shown dramatic
improvements in the number of L2-cache misses and appreciable improvements in
throughput.

1.2.4 The broomstick toolkit

The above optimizations are integrated into a server program through static anal-
ysis and transformation of its implementation. We provide tools that automatically
carry out these operations in an event-driven C program that conforms to a memory
allocation and scheduling interface specified in this work. Legacy event-driven pro-
grams can be modified to expose this interface using specific code annotations or by
implementing stub functions corresponding to those in our interface. These tools are
collectively referred to as the Broomstick toolkit.

The integration process consists of four steps. First, static analysis is used to sum-
marize the server’s memory-usage behavior. Second, a customized memory allocator
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is generated according to the size distributions and lifetimes of the data, identified in
the first step. Third, invocations of the original memory allocator in the program are
replaced by invocations of the customized one. Finally, the scheduler is modified to
use feedback from the customized allocator to ensure that the total data set stays in
a cache-aligned, cache-sized region.

We have evaluated the portability of the Broomstick Toolkit by applying it to
several event-driven applications, such as industry-standard web servers, the Cactus
QoS manager, the Squid proxy server etc.

1.3 Thesis organization

We describe the techniques outlined in the passages above in detail in the re-
mainder of this thesis. Before we do so, in Chapter 2 we give an overview of the
research published in this domain prior to and during the course of our work. Chap-
ters 3, 4, 5 and 6 present protocol-stack specialization, remote specialization, memory-
manager/scheduler co-design and the static analysis tools we have developed to op-
timize event-driven servers, respectively. Finally, Chapter 7 presents a case study
that demonstrates the use of our approach in the context of the TUX server. TUX
is widely regarded as the fastest implementation of network servers available today.
Thus, by improving its efficiency, we provably advance beyond the state of the art.
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Chapter 2

Related Work

Over the years, the optimization of network software has been approached from
many different angles. In the early stages of the growth of computer networks, net-
work scientists and architects identified the implementation of network protocols as a
separate class of systems programs. The optimizations developed then were dedicated
to small programs that implemented a particular functionality of a network service,
such as the transmission of TCP segments.

As computers became increasingly networked, there arose a need to program net-
work software using standard software engineering and programming methodologies.
Thus, operating systems incorporated the notion of network sockets into their design.
The Internet socket was introduced in BSD UNIX version 4.2 in 1983. This design
change soon propagated itself to other OSes as libraries and OS extensions.

However, OS designers soon realized that although the abstraction of a socket and
the underlying implementation of network protocols allowed the functionality of an
application to be distributed seamlessly, it was not designed with the aim of achieving
optimal performance. Furthermore, many fundamental operations in OSes, such as
locking, interrupt handling and buffer management had been designed without regard
to the specific needs of the network subsystem. To address this problem, there issued
a series of works to adapt OS primitives and optimize the implementation of network
protocols. Many of these works focussed on “specializing” the implementation of
network protocols based on the context in which it would be used.

By the late 1990s, OS support for networking had matured. Then, the focus
of attention was removed to higher-level issues that involved the strategy used to
implement specific aspects of a network application, such as the scheduling of compute
bound activities in the server with respect to I/O bound activities. This phase led to
the introduction of the event-driven paradigm for implementing network applications.
A variety of approaches, ranging from tricks to fine-tune the performance of servers
to adaptive resource management were introduced.

In the year 2006, two main challenges differentiate themselves from those that
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have been pursued by prior work. First, embedded systems have become networked.
These systems are usually slower and contain less memory and disk space compared
to mainstream desktop and server systems. Thus, the performance and size issues
in network software need to be reconsidered in this context. Secondly, the large
disparity between the computational bandwidth of microprocessors and their memory
bandwidth has splayed the behavior of network servers with respect to the underlying
hardware. This phenomenon is compounded by the fact that the availability of large
amounts of dynamic memory removes the traditional bottleneck of disk I/O from the
functioning of network software.

In the remainder of this chapter, we will discuss works that have approached the
same or similar problems as the ones that we do, those that apply a similar approach
to other problems, and finally, works that have inspired the method underlying our
approach. We focus on works that directly optimize network software, but also veer
into the domains of extensible operating systems, generic cache optimizations in op-
timizing compilers, partial evaluation of systems code, and the domain of program
analysis.

2.1 Optimizations for network software

We divide the optimization of network software into two main parts. The first
part applies to network protocol stacks, which typically implement protocols in the
network, transport and sessions layers. The second part involves the optimization
of the implementation of application-level protocols. Both of these are discussed
separately in this section.

2.1.1 Optimizing protocol stacks

Optimizing protocol stacks has been a consistent area of research in network sys-
tems. Protocol stacks have been optimized using various approaches over the past two
decades. And even today, work continues on flexible OS architectures that facilitate
fast networking. We see our work as fitting in the broad scope of these efforts, with
a specific motivation to automate optimization for embedded network systems.

Mosberger et. al [51] list some useful techniques for optimizing protocol stacks.
Protocol-stack specialization captures most of the optimizations described in this
work. Path-inlining comes for free, as the specialization context specified in our work
directly identifies the fast path associated with operations, bringing all code that goes
into it together. Function outlining works in the same way, as unneeded functions are
specialized away from the code used. Function cloning can happen when a function
is fully static and determined at specialization time.

X-kernel [37] is an object-based framework for implementing network protocols.
With the help of well-documented interfaces, it enables developers to implement pro-
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tocols and create packet processing chains rapidly. Run-time code generation has
been known to yield impressive performance gains in prior works such as DPF [29]
and Synthesis [60]. Synthesis also used aggressive inlining to flatten and optimize
protocol stacks. Plexus [31] allows the creation of application specific protocols in
a type-safe language, which can be dynamically inserted into kernels. Prolac [39]
is a statically-typed, object-oriented language to implement network protocols that
deviated from theoretical models for protocol definition and focused on readability
and ease of implementation. These efforts, however, are orthogonal to our work as
our aim is to reuse existing protocol stack implementations in an efficient way, as
opposed to encoding new ones. It uses the leverage of evolved OS code and optimizes
it in a way that entails negligible modifications in itself and minimal modifications in
applications that utilize it.

2.1.2 Network-server optimization

The scalability of servers has been an intensively researched topic in the systems
community. Much of this research has been done in the context of servers with a
considerable amount of I/O activity. In this section, we will focus on the works that
are most pertinent in the context of CPU-bound servers.

Chandra and Mosberger introduced multi-accept servers [16] that were shown
to bring about significant gains in performance as compared to traditional servers.
Brecht et al. [14] have shown that performance could be enhanced with small modi-
fications in the above strategy. The results of both these works concur with the ob-
servations presented in ours, in that, (i) Chandra’s approach advocates that servers
aggressively accept requests and treat requests in as large batches as possible, im-
proving locality with respect to instructions and static data.(ii) Brecht’s approach
advocates that these batches be limited in size, to prevent the total working data set
of the server from exploding. Our approach strikes a balance between these two poli-
cies in an adaptive way and derives itself from the characteristics of the underlying
cache.

Larus and Parkes presented another cache-aware scheduling strategy called Cohort
scheduling [40]. The scheduling strategy used in conjunction with the Stingy allocator
includes a policy that effectively implements a variant of Cohort scheduling, favoring
the batching of requests as long as it can be done without causing data-cache misses.
Better instruction-cache locality was also the goal of Blackwell [12], in his work on
optimizing TCP/IP stacks. He showed that by processing several packets in a loop
at every layer, one could induce better reuse of the corresponding instructions.

Cache-conscious data placement has been used to optimize the caching behavior
of generic programs [15, 18, 17]. These works use program analysis and profiling
information to efficiently arrange objects in memory, and fields within objects. While
the goal of these efforts is to reduce the number of cache misses in generic programs,
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our work focuses on the specific problem of reducing data cache misses in event-driven
servers, since they have a well defined structure and behaviour with respect to the
concurrency of request treatment.

Recent work has advocated policies for resource aware scheduling. The Capriccio
threading library [71] is one example, in which scheduling aims to balance the utiliza-
tion of various resources at blocking points in the server application. These blocking
points are points at which potentially blocking system calls are invoked, and are ex-
tracted automatically. The resources tracked by Capriccio were memory, CPU and
file descriptors. Blocking points in a program can be seen as end points of implicit
stages in a server. In relation to Capriccio, our work could be seen as a special kind
of resource-aware scheduling which aims to constrain cache usage. Similar to Capric-
cio, the SEDA architecture [72] had dynamic resource controllers, which dynamically
adapted resource usage at various stages based on observed performance. SEDA also
did not specifically explore caching inefficiencies in CPU-bound servers.

2.2 Extensible operating systems

The main purpose of customizability in OS research is to provide flexible mecha-
nisms and policies, so that functionalities can suit the needs of applications and users.
In a survey on such customizability, Denys et. al [35] classify such customizability on
two bases: (1) The initiator of adaptation (human, application or OS) and (2) The
time of adaptation (at compile time or run time). Our remote specialization infras-
tructure performs application-driven customization at run time. In this section, we
discuss works in these categories and then go on to discuss other approaches.

Application-driven and run-time adaptation. Many approaches are aimed to pro-
vide a fixed set of behaviors that can be selected at run time by the applications.
These behaviors are developed by the systems programmer, and are supported by
various interfaces and mechanisms. We briefly present three projects along this line.

Exokernel, introduced by Engler et. al [30] tries to eliminate all kernel abstrac-
tions and lower the kernel interface to the bare hardware. Each customized behavior
corresponds to a systems program; it is introduced as a special Library Operating
Systems. User programs can then choose the OS libraries to use at run time. The
Kea project [69] introduces customized behavior through a portal. Depending on the
portal an application uses, the kernel decides which implementation of the requested
service to use. Like Exokernel, Kea requires the customized behaviors attached to
portal to be developed by a systems programmer. In SPIN [10], the application de-
veloper may program the customized behaviors of the OS to match the application
requirements.

Other approaches. The VINO project [63] explores the general purpose automatic
approach for customization. VINO automatically adapts to newly arising situations
based on the periodic retrieval of statistics maintained by each subsystem and through
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traces of requests and results. This project did not lead to an implementation. One
could imagine that such information could be used similarly to drive our customization
infrastructure. OSKit is used to produce customized OSes [33]. It consists of a
framework and a module library with interfaces that are used to implement a specific
OS.

Another possible criterion in taxonomy, valuable in our context is what the cus-
tomization operates on. Most efforts to customize OSes operate on functional ele-
ments, defining policies for scheduling [41], efficient implementations of subsystems
[30] etc. Our remote specialization infrastructure, on the other hand, operates di-
rectly on code. In this way, customization can cross-cut functional elements. This
is particularly useful when aiming to reduce the size of the system footprint, since
narrowing the customization context reduces the code size in proportion. Many OSes
use configuration systems that produce customized binaries with the help of context-
sensitive macros, which expand into context-specific code. The configuration system
of the Linux kernel is one such example. These systems, however, are highly coarse-
grained and inflexible. Loading code with macros and preprocessor directives (like
#ifdefs) adversely affects its readability. Furthermore, it is virtually impossible to
express customization behaviors with rich customization contexts.

In most adaptive systems, adaptation of mechanisms and policies are carried out
on the same system they reside on. With our remote customization infrastructure,
we separate out this adaptive step to be executed on a powerful server. This sepa-
ration is indispensable in carrying out any non-trivial run-time customization for a
device with limited resources. Indeed, on the device, the customization process can
incur significant overhead both in space and time. As the gap between the capa-
bilities of mobile systems and mainstream servers increases, this separation becomes
increasingly crucial.

2.3 Program specialization

Some recent specialization efforts have used tempo, through its SML interface
to specialize systems code (Muller et al. [52, 53, 70]). These works examine the
specializability of the RPC functionality of Operating Systems, and do not put any
constraints on the mechanisms used to achieve specialization. Thus, these works
can be expressed as a configuration for our specialization infrastructure, and can thus
benefit from it. In a significant work in this area, Pu et. al [59] have presented various
offline tools that can be used to guide the process of making a system specializable.
Some of these tools, in particular ones that assist the generation and placement of
code guards can be reused in the context of our work.
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2.4 Cache optimizations

With the increasing gap between microprocessor speeds and memory access times,
cache optimizing programs has been an intensively researched topic in the compiler
and systems community. Due to its sheer size, it is impossible to cover the full body
of work in the domain. We will focus on the works that are the most related to ours.

Larus and Parkes presented Cohort scheduling [40], which is another scheduling
strategy to improve the cache performance of concurrent programs. As described
earlier in this section, Cohort scheduling induces consecutive runs of stages by accu-
mulating (cohorting) tasks at specific stages. This policy is configured by heuristics
based on inter-stage delays and queue lengths, and has the most positive impact on
static global state and the instruction cache. Our work strikes a balance between per-
task state and global state by using static analysis. Better instruction-cache locality
was also the goal of Blackwell [12], in his work on optimizing TCP/IP stacks. He
showed that by processing several packets in a loop at every layer, one could induce
better reuse of the corresponding instructions.

Cache-conscious data placement has been used to optimize the caching behavior
of generic programs [15, 17, 18]. These works use program analysis and profiling
information to efficiently arrange objects in memory, and fields within objects. While
the goal of these efforts is to reduce the number of cache misses in generic programs,
our work focuses on the specific problem of reducing data cache misses in concurrent
programs. Specifically, although such data placement can be beneficial for a certain
number of object instances, it does not address the situation in which the number of
these instances is multiplied as a result of increasing concurrency.

2.5 Miscellaneous work

Rajagopalan et al. have considered the problem of improving the performance
of event-driven programs in general [61]. As this class of programs includes pro-
grams such as GUIs that depend heavily on user interaction and are thus highly
non-deterministic, their approach relies on dynamic profiling to identify commonly
occurring event-handler sequences rather than the static analysis used in our ap-
proach. This reliance on dynamic profiling implies that they can only optimize syn-
chronous events, as it is only in this case that there is guaranteed to be a connection
between two event handlers that occur in sequence. In contrast, the approach we
have implemented using the Stingy allocator and the Broomstick toolkit is indepen-
dent of whether events are synchronous or asynchronous. The kinds of optimizations
performed are also quite different, as they consider primarily optimizations in the
call-and-return interface between event handlers such as function inlining, whereas
we consider cache behavior. These optimizations are orthogonal, and applying both
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kinds of optimizations to servers that raise many synchronous events could yield fur-
ther speedups.
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Chapter 3

Protocol-Stack Specialization

The goal of efficient data processing in protocol stacks is well-established in the
networking community [29, 47, 57, 68]. It has increased in importance with embedded
devices becoming more networked, as throughput on such systems is invariably limited
by the processing capabilities of the CPU.

Program specialization [38] has been acknowledged to be a powerful technique for
optimizing systems code [49, 59]. Conceptually, a specializer takes a generic program
as input along with a specialization context consisting of values of known data items. It
then evaluates the parts of the program that only depend on these known values, and
produces a simplified program that is thus specialized for the supplied specialization
context.

Our analysis of optimization opportunities in protocols stacks through an eval-
uation of optimizations described in previous work [51] and an analysis of the code
of the Linux and FreeBSD OSes has led us to make the following hypothesis. The
optimization opportunties in protocols stacks can be expressed concisely and con-
veniently as specialization invariants. Thus, the process of specialization is highly
suited to optimizing protocol stacks.

In this chapter, we describe an approach to speeding up TCP/IP on CPU lim-
ited systems through run-time code generation using program specialization. In our
approach, specialization is a continuous process, sensitive to the needs of various ap-
plications. The usage contexts and associated specialization opportunities are defined
in two phases (i) specific functionalities of a protocol stack are defined as specializable
by the OS developer and (ii) applications are modified by programmers to request the
specialization of the system functionalities that they invoke. The former task is per-
formed via annotations written in a declarative language program [42], and the latter
by invoking a new set of system calls . Applications can trigger specialization as soon
as the specialization context becomes known. For instance, a specialization context
can consist of the TCP MSS, the destination IP address, and the route associated
with the address. In this case, the time at which specialization can be launched is the
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end of the TCP 3-way handshake, at which time all of the above parameters become
known.

The TCP/IP stack we have used in our proof-of-concept implementation and ex-
periments is that of the Linux kernel. We have validated our effort with experiments
on three platforms: a Pentium III (600MHz), an ARM SA1100 (200MHz) on a COM-
PAQ iPAQ, and a 486 (40MHz). Experiments conducted using this setup have shown
that there is a notable code speedup, and a drastic reduction in code size. In the
case of the UDP protocol, the size of the specialized code once compiled is only about
5% of the generic compiled code. For TCP, this ratio is less than 3%. The execu-
tion time of the code in the case of UDP decreases by about 26% on a Pentium III
(700MHz) and the local throughput of 1Kb packets increases by about 13%. For a
favorable packet size of 64b, this improvement is about 16%. On a 486, the increase
in throughput for 1Kb packets is about 27%. For TCP, the throughput increases
by about 10% on the Pentium III and about 23% on the 486. On an iPAQ running
an SA1100 processor at 200MHz, we observe an improvement of about 18% in the
throughput of 1Kb packets for UDP.

3.1 Specialization of protocol stacks: concept and

mechanism

The key observation that makes a protocol stack amenable to program special-
ization is of its mode of usage. An application that needs to exchange data over the
network first creates a channel (a socket) and over the duration of a communication
session, configures specific properties associated with this channel. Such properties
include the protocol versions to use, the time-to-live of packets, connection timeouts
etc., and define the semantics of the connection.

For example, conventionally, an HTTP server that needs to maximize its through-
put is likely to use non-blocking asynchronous communication. In constrast, a server
that needs to minimize request latency might use blocking synchronous communica-
tion. Similarly, applications that transfer data in bulk would favor the use of large
local buffers, while an application transferring data in small transactions would try to
minimise connection lifetimes. Such sensibilities, although well defined in the process
of application development, become known to the OS kernel (i.e., the protocol stack)
only once the application is deployed.

Using program specialization, we declare the assignment of these properties as
program invariants. When their values become known, a program specializer is in-
voked to generate specialized code that incorporates their concrete values. The scope
of the invariance is determined systematically at the time the OS kernel is built. The
kernel is extended with routines to invalidate the code or to reinforce the relevant
invariant if an assumption fails.
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The process of guarding invariants is discussed in detail later on in this chapter.
Before that, we enlist the specialization opportunities in protocol stacks. We present
these specialization opportunities organized with respect to the layers of TCP/IP.
They are first described in the context of Linux, and then revisited in the context of
FreeBSD.

3.1.1 Specialization opportunities in the sockets, udp and ip
layers

The Sockets, UDP and IP layers contain the following specialization opportunities:

Eliminating lookups. Sockets are stored as entries in a special file system, indexed
by their associated file descriptors and retrieved using special accessor functions. The
code fragment below shows the implementation of the sendto system call, which
begins by using the sockfd_lookup function to fetch the relevant socket structure
from the inode corresponding to the file descriptor.

asmlinkage long sys_sendto(int fd, void * buff,
size_t len, unsigned flags,
struct sockaddr *addr, int addr_len) {

...
sock = sockfd_lookup(fd, &err);

}

Since the binding between a socket descriptor and the socket structure does not
change once the socket has been created, the code can be specialized so that the
socket structure and its fields are inlined into the code. Thus, the reference to the
target socket structure is defined as invariant, and is retrieved once and for all at
specialization time.

Eliminating interpretation of options. Execution paths for sending and re-
ceiving packets are highly branched due to the interpretation of several levels of
options. These options, as illustrated by the following excerpt, indicate whether the
session is blocking (O_NONBLOCK) or non-blocking, whether the message is being sent
to probe the MTU (msg_controllen), whether the address is unicast or multicast
(MULTICAST), etc.

if (MULTICAST(daddr))
...
if (sock->file->f_flags & O_NONBLOCK)
...
if (msg->msg_controllen)
...



3.1. SPECIALIZATION OF PROTOCOL STACKS: CONCEPT AND
MECHANISM 17

Usually, these options are interpretted on every execution of the code containing
them even though they are invariably constant throughout a communication session,
and very often even for specific applications. We exploit this property to declare
the values of these options as program invariants. As a consequence, the condi-
tions depending on these options get statically evaluated at specialization time. This
transformation has two effects: Firstly, it changes branched code into linear code.
Secondly, since it results in code that is more deterministic than its original generic
form, it enhances several optimizations, such as constant propagation, that depend
on the determinism of the program control flow.

Eliminating routing decisions. The route associated with the destination ad-
dress of a packet is validated each time the packet headers are constructed. This
repeated validation is performed to cope with situations in which the route changes
during the life of a connection. The occurrence of such an event is extremely rare and
so the possibility of its happening can be neglected for most applications. Doing so,
we specialize it by declaring the route as an invariant for the duration of a connection.

This invariant enforces upon the implementation the specific belief that the route
associated with the current destination address has not changed since the transmis-
sion of the previous packet. As a result, information on the route associated with
the destination address is inlined into the code. This information includes the iden-
tifier of the output interface, the real destination address and IP-specific parameters
associated with the route.

Optimizing buffer allocation. Memory is allocated memory is allocated at var-
ious points during the processing of a packet and is parameterized with respect to a
number of properties such as the chosen buffer management strategy (linear socket
buffers versus small fixed sized buffers, scatter-gather I/O versus versus block copies).
Although the allocation and initialization of socket buffers are cached in kernel caches
like the slab cache [13], large bursts of data and low memory situations can cause
buffer allocation to go through the full length of the Virtual Memory subsystem (in
Linux, through the slab allocator, the buddy allocator, the zone allocator and page
allocation routines).

Memory management routines are also amenable to specialization. Calls to generic
allocation routines, such as those used to allocate socket buffers, can be specialized
to produce routines that simply allocate a physical page and return. The invariants
used in this specialization include options passed to the memory allocator including
the region to allocate memory in, the atomicity of the operation etc..

Another useful invariant in this respect are the values of the sizes of the various
buffers allocated. This is because a large number of allocation sizes in the code depend
on the size of the application data unit (ADU) used by the application. Unfortunately,
since this parameter is specified only when data is transmitted, and not at the time
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a socket is created and parameterized, it cannot be treated as an invariant in the
default implementation of a TCP/IP stack.

We treat this deficiency by defining a new socket option for an application to
commit the size of the ADU to the OS kernel. In this way, for most workloads, a
number of conditions and predicates based on the size of the ADU can be reduced.
For example, in the second half of the excerpt below, the variable dlen, which is a sum
of the buffer size and some constant header sizes, becomes invariant. The specializer
can calculate npages and subsequently apply a loop unrolling transformation on the
following for loop.

/* Check if function can block*/
if (in_interrupt() && (gfp_mask & GFP_WAIT)) {

static int count = 0;
if (++count < 5) { ... }
gfp_mask &= ~GFP_WAIT;
...

npages = (dlen + (PAGE_SIZE- 1))
>> PAGE_SHIFT;

skb->truesize += dlen;
((struct skb_sharedinfo *)

skb->end)->nr_frags = npages;
for (i = 0; i < npages; i++) { ... }

TCP

The complexity of TCP implementations is largely due to its generality, or specifi-
cally, the numerous configurations in which it can run. This property makes the TCP
code highly amenable to program specialization. The opportunities associated with
the layers described above: lookups of structures based on the connection id, generic
memory management and option interpretation can be found in the TCP code as
well.

TCP can be specialized when the characteristics of data transfer can be foreseen
when the communication channel is established. The characteristics that we exploit
in our specialization invariants are described below.

The tcp_send routine, which is the entry point into the TCP begins by determin-
ing whether the buffer being transmitted can be accommodated into the last unsent
TCP segment. This process is called TCP coalescing and is aimed to reduce the
header overhead of packets by reducing the number of small packets transmitted.

if (tp->send_head == NULL ||
(copy = MSS_now - last_skb_len) <= 0) {

if (!tcp_memory_free(sk))
goto wait_for_sndbuf;
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skb = tcp_alloc_pskb(sk,
select_size(sk, tp), 0, sk->allocation);

We specialize this code by assuming that the Maximum Segment Size (MSS) associ-
ated with the connection is invariant over a TCP connection (as is usually the case),
causing all associated conditionals to be elided, and constants inlined.

Interestingly, if an application commits the size of the ADU to be a multiple of the
MSS using our new socket option, TCP coalescing is ruled out, as every segment sent
out is MSS-sized. In the code illustrated above, MSS_now - last_skb_len becomes
zero. This information causes the main loop to unroll resulting in the sugared block of
code below. The MSS for a connection is determined when a connection is established,
and does not change unless the Path MTU (PMTU) for the current route changes.
This situation is the condition used to guard the invariant, as discussed in detail in
Section 3.2. Assuming a constant MSS also specializes out Nagle’s algorithm [55].

As a side benefit, having an ADU size smaller than the MSS is beneficial to the
receiver, since it saves it from having to gather ADUs fragmented into multiple TCP
segments.

/* While some data remains to be sent*/
while (seglen > 0)
{
/* Calculate bytes to push into previous skb*/

copy = MSS_now - last_skb_len;
/* Is there enough space in the previous skb?*/

if (copy > 0) {
if (copy < seglen)

copy = seglen;
push_into_previous(copy);

}
else {

copy = min(seglen, MSS_now);
push_into_current(copy);

}
seglen -= copy;

}

There are also several variables in the congestion control algorithms that can
be used for specialization. For example, the Selective Acknowledgments (SACK)
option [48] is useful in situations where multiple segments are lost in one window.
For an application functioning in a high-speed, uncongested local area network it
may be worthwhile to specialize it away.

Most congestion control features that are not mandatory correspond to system-
wide variables (sys_ctls) that can be used to disable these features for the entire
system. With specialization, we make these variables a part of the specialization
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context and set them on a per-process basis. Furthermore, since these are known at
specialization time, we can use their values to specialize code that depends on them.
In our experiments, we have not used specialization to disable congestion control
altogether. We specialize out only those congestion control mechanisms that become
unnecessary as a result of assumed invariants.

Although the specialization opportunities in TCP outnumber those in the rest of
the network stack code, there are many features that are seemingly unspecializable,
and have been left out. Some of these opportunities are unexploited because the
associated invariants are too complex to be handled by specialization. For example,
the handling of the congestion window depends on various statistical variables that
are maintained outside of the protocol stack, and hence cannot be taken into account
by the static analyses of program specializers like the one used in this project, as
these specializers operate at the component level.

Cross-comparing with FreeBSD

The specialization opportunities exploited in this project occur across UNIX sys-
tems. We confirmed this claim through an analysis of the FreeBSD-5.1 to identify
the opportunities listed in the Linux protocol stack. Socket structures are looked up
based on connection identifiers:

mtx_lock(&Giant);
if ((error = fgetsock(td, s, &so, NULL)) != 0)

goto bad2;

The code is highly branched with options being interpreted,

dontroute = (flags & MSG_DONTROUTE)
&& (so->so_options & SO_DONTROUTE) == 0
&& (so->so_proto->pr_flags & PR_ATOMIC);

if (control)
clen = control->m_len;

Unlike Linux, which uses linear socket buffers, BSD uses chains of small fixed-
size mbuf structures for its network buffers. Apart from the small fixed-sized region
(typically 112 bytes) available in the mbuf, data can be stored in a separate memory
area, managed using a private page map and maintained by the mbuf utilities. Due to
its complexity, there are many more opportunities for specialization in the allocation
system used by BSD than there is in the linear sk_buffs in Linux. Supposedly, a key
reason to use mbuf structures in BSD is the fact that memory was far more expensive
at the time it was designed. BSD copes with this design by using clusters to get as
close to linear-buffer behavior as possible. This behavior is invariant at run time, and
can thus be specialized.
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Figure 3.1 contains a fragment of the fast-path of the UDP send operation. All the
conditionals that depend on invariants are printed in boldface. As one can observe,
this code will shrink drastically once the conditionals are reduced away.

The routing decisions in the IP layer (the ip_output function) closely resemble
the ones in Linux and offer the same specialization opportunities. The assumptions
made in TCP are all protocol-centric and do not depend on any specific characteristics
of an implementation. More examples of optimizations available in FreeBSD as well
include optimizations enabled by specifying the ADU size explicitly, freezing the MSS,
which is calculated based on the PMTU like in Linux, avoiding the Silly-Window-
Syndrome algorithm and the explicit specialization-time removal of optional features
such as ECN and SACK.

3.1.2 Code guards

When an invariant used for specialization ceases to be valid, the corresponding
optimized code becomes invalid as well. Although most events that cause this to
happen are highly improbable, they are nevertheless possible, and one needs to ensure
that on their occurrence, the system is returned to a consistent state. To do so we
use code guards [59]. The dynamics of establishing guards and the process of code
replugging were first described by Pu et al. [59].

Events that can violate invariants can be classified into two categories: application-
triggered events and environment-triggered events. An application triggered event is
caused when an application invokes a routine that explicitly violates an invariant. It
is relatively easy to guard against such events, since the guards can be established at
the source, i.e., at the entry points of such routines. Environment-triggered events on
the other hand, are caused by side-effects on the state of the system. These events are
more difficult to guard against. We have used the LXR source code cross-referencing
system dedicated to the Linux OS to exhaustively list these cases. We now describe
our treatment of invariant violations. More details on the implementation aspect of
code guards are presented in Section 3.2.

Application-triggered violations.

• When an attempt is made to modify certain socket options during a session, a
guard placed in the main handler that intercepts such requets from applications
rejects the operation.

• An attempt to implicitly modify an ADU that has been specified as invariant
is also rejected. The guard that performs this check is placed in the code path
of the specialized system call.

Environment-triggered violations.
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do {

if (uio == NULL) {

resid = 0;

if (flags & MSG_ EOR)

top->m_flags |= M_EOR;

} else do {

if (top == 0) {

MGETHDR(m, M˙WAIT, MT˙DATA);
if (m == NULL) {

error = ENOBUFS;

goto release;

}

mlen = MHLEN;

m->m_pkthdr.len = 0;

m->m_pkthdr.rcvif = (struct ifnet *)0;

} else {

MGET(m, M_ WAIT, MT_ DATA);
if (m == NULL) {

error = ENOBUFS;

goto release;

}

mlen = MLEN;

}

if (resid >= MINCLSIZE) {

MCLGET(m, M_ WAIT);
if ((m-> m_ flags & M_ EXT) == 0)

goto nopages;

mlen = MCLBYTES;

len = min(min(mlen, resid), space);
} else {

len = min(min(mlen, resid), space);
/*For datagrap protocols, leave room*/

if (atomic && top == 0 && len) ¡ mlen)
/*for protocol headers in first mbuf*/

MH˙ALIGN(m, len);
}

. . .
}

while (!buffer_sent);

Figure 3.1: Fast-path of the UDP send operation in BSD
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• When a socket is closed during the transmission of a packet, the specialized
code is immediately invalidated, as it is based on a defunct socket structure.
Closing a socket involves the step of closing the associated file descriptor in
a special routine, filp_close. Thus, the guard necessary is placed at this
location as well. The potential race condition between the specialized code and
this routine is resolved by using a mutex that ensures that the specialized code
is not invalidated in-between an iteration.

• When the route associated with a destination address changes during a session,
we once again prevent the execution of the code using the route by acquiring
a semaphore. In such a situation, there can be two possible courses of action.
The first option is to suspend the execution of the old code, re-specializing the
code according to the new route and then resume its execution. This approach,
however, is infeasible because it would stall the operation in progress for an
extended length of time. We instead choose the second strategy, and reinforce
the assumption by offsetting the behavior of the code. That is, instead of
changing the code to make it correct, we offset the system to achieve the same
result. Concretely, a Network Address Translation (NAT) rule is installed as a
reinforcement to ensure delivery to the correct physical destination.

3.2 Enabling the specialization

Before discussing the implementation of the specialization infrastructure, i.e., the
machinery that actually generates specialized code and loads it in the kernel of the
target machine, we will describe a typical scenario to acquaint the reader with how
our approach works in practice.

A scenario

Our specialization architecture allows specialized versions of code to be requested
for a fixed set of system calls, defined at the time the OS is compiled. To simplify
discussion, we will focus on the send system call, which is the most common function
used to submit data to the protocol stack.

Specialization of the send system call is requested through the corresponding entry
in the global specialization interface. This entry, do_customize_send, corresponds
to a macro function that expands into a unique system call, common to the entire
interface. This macro is invoked as early as the specialization context becomes known,
with the values forming the specialization context, such as the socket descriptor, the
destination address, the protocol to use, etc. This invocation returns a token, which
is used by the application to refer to the version of the system call, specialized for the
specific context. Defining a new token to multiplex operation instead of the socket
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Original C code:
struct sk_buff *sock_alloc_send_pskb( struct sock *sk,

unsigned long header_len,

unsigned long data_len,

int noblock,

int *errcode) {

...

}

Tempo specialization declarations:
Sock_alloc_send_pskb:: intern sock_alloc_send_pskb(

Spec˙sock( struct sock) S(*) sk,

S( unsigned long ) header_len,

S( unsigned long ) data_len,

S( int ) noblock,

D( int * ) errcode) {

...

};

Figure 3.2: Specialization declarations

descriptor allows for multiple versions of the send system call to be used with the
same socket descriptor.

Invoking the specialized version of the system call is done via customized_send,
which takes three arguments less than the former, as they have been inlined into the
specialized code. However, it takes one additional argument, namely the token.

3.2.1 Describing the specialization opportunities to the spe-
cializer

The program specializer we used in this project is the Tempo C Specializer [20].
Tempo provides a declaration language that allows one to describe the desired spe-
cialization by specifying both the code fragments to specialize and the invariants to
consider [42]. Concretely, this amounts to copying the C declarations in a separate
file and decorating the types of each parameter with S if the parameter is an invari-
ant and D otherwise. An example of the declarations we have written for the Linux
protocol stack is shown in Figure 3.2. These declarations specify that the function
sock_alloc_send_pskb has to be specialized for a context where the parameters
header_len, data_len, noblock are invariant. Furthermore, the pointer sk is also
an invariant and points to a socket data structure that exhibits invariant fields, as
specified by Spec_sock which is not shown. These declarations enable Tempo to
appropriately analyze the code. Once the analysis is done, the specialization may be
performed as soon as the specialization context (i.e., the values of the invariants) is
made available.
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3.2.2 Specialization process: local or remote?

The most important issue to address when specializing code for CPU limited
systems is where to execute the process of specialization, as it can be expected to
consume a lot of resources.

We have implemented two versions of our specialization infrastructure, one of
which loads and executes the program specializer, and the compiler to compile the
generated code, locally. The other version, described in detail in another publica-
tion [4] requests specialized code to be generated by sending the specialization con-
text used and downloading the specialized code generated. This is the approach of
choice for embedded network systems. In the following subsections, we give a short
description of both approaches.

3.2.3 Specializing locally

Specializing locally may be desirable in cases when a reasonably powerful server
needs to maximize its efficiency transferring over a high speed link, such as one that
functions at speeds of 1Gbps and more.

The most important implementation issue here is making the specialization con-
text, consisting of invariant properties, available to the specializer. This is significant
as these values are available in the address space of the kernel, and cannot be accessed
by the program specializer, which runs in user-space.

In the local case, we solve this problem by running the specializer as a privi-
leged process and giving it direct access to kernel memory. The technique used to
accomplish this is described in detail by Toshiuki [45].

3.2.4 Specializing remotely

Being able to specialize remotely is crucial for low-end systems such as PDAs, as
running specialization on them would consume scarce memory and storage resources
as well as take a long time to complete. In remote customization, the OS kernel on
the target device for which the specialized code is needed packages the specialization
context and key run-time information and sends them to a remote specialization
server. The context and run-time information are used to emulate the device run-
time environment on the server, and the specializer is run to use this environment
in part to generate the specialized code. The specialized code is finally sent to the
device. We will describe this process in detail in Chapter 4.
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3.3 Experimental performance evaluation and anal-

ysis

In this section, we present the results of a series of experiments conducted to
evaluate the impact of specialization on protocol stacks in OS kernels. Our setup
consisted of three target devices: a Pentium III (PIII, 700MHz, 128MB RAM), a 486
(40MHz, 32MB RAM) and an iPAQ with an ARM SA1100 (200MHz, 32MB RAM).
We evaluated the performance of specialized code produced using our architecture for
each of these individually.

Specialization was performed remotely [4] for all three architectures, on a fast
server and over a 10Mbps wireless LAN. We used version 2.4.20 of the Linux kernel
for our implementation and all our experiments.

We first describe the experiments conducted, then present the results and finally
characterize them and conclude.

3.3.1 Experiments

The experiments conducted compare the performance of the original TCP/IP
stack to that of the specialized code produced for performing basic data transfer over
the network. The measurements were carried out in two stages:

• Measuring code speedup. We sent a burst of UDP packets and record the
number of CPU cycles taken by the pertinent code (i.e., the socket, UDP and
IP layers) in the un-specialized and specialized versions. These measurements
were performed in-kernel.

• Measuring throughput improvement. The Netperf benchmark suite [19] was
used to find the impact of specialization on the actual data throughput of the
TCP/IP stack. The results shown compare the throughput measured by the
original implementation of Netperf using the un-specialized stack, to a modified
version using the specialized code produced by the specialization engine. The
latter was modified to use the specialization interface. This measure also gives
an indication of how much CPU resource is freed up, as the additional CPU
cycles now available may be used for activities other than data transmission.

Along with the results of these experiments, we also present the associated overheads
in performing specialization.

3.3.2 Size and performance of specialized code

Figure 3.3(a) compares the number of CPU cycles consumed by the Socket, UDP
and IP layers before and after specialization. We find that there is an improvement
of about 25% in the speed of the code.
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Figure 3.3: Specialization results: Performance, code size and overhead.

Figure 3.3(b) compares the size of the specialized code produced, to the size of
the original code. The original code corresponds to both the main and auxiliary
functionalities required to implement the protocol stack. The specialized code is a
pruned and optimized version of the original code for a given specialization context.
We observa that the specialized code can be up to 20 times smaller than the original
code.

Figures 3.4(a) and 3.4(b) show a comparison between the throughput of the
Socket, UDP and IP layers before and after specialization, measured by the UDP
stream test of Netperf on the PIII. Figure 3.4(c) shows the same comparison for the
486 and the iPAQ respectively.

On the PIII, for a favorable packet size of 64b, the improvement in throughput is
found to be about 16%, and for a more realistic size of 1Kb, it is about 13%. On the
486, the improvement for 1Kb packets is about 27%. For the iPAQ, again with 1Kb
packets, the improvement is about 18%.

Figures 3.4(d) and 3.4(e) show a comparison between the throughput of the Socket,
TCP and IP layers before and after specialization, measured by the TCP stream test
of Netperf on the PIII, 486 and iPAQ. Corresponding to a TCP Maximum Segment
Size of 1448 bytes, there is an improvement of about 10% on the PIII, 23% on the
486 and 13% on the iPAQ.

Finally, Figure 3.3(c) shows the overhead of performing specialization with the
current version of our specialization engine, in the setup described earlier.
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3.4 Conclusion

In this chapter, we have described an approach to combining the leverage of a
generic protocol stack, with the footprint and performance advantages of a customized
one. To achieve this combination, we use automatic program specialization. We have
implemented a facility for applications to invoke such specialization and use special-
ized code with minimal modifications. This implementation is optimized for local
specialization, but has been extended to specialization in a distributed environment
as well [4].

Specialization of the Linux TCP/IP stack reduced the code size by a factor of
20, improved the execution speed by up to 25%, and improved the throughput by up
to 21%. The portability of the approach has been demonstrated by our experiments
on three architectures: PIII, Intel 486, and ARM and our perusal of FreeBSD 5.1 to
establish a correlation.

3.5 Shortcomings and possible extensions

We believe the main shortcomings of this work to be the following:

• Informal approach to placing code guards. The location of code guards depends
not only on the conponent that is specialized but also on functionalities in other
components that interact with it. Unfortunately, the current state of the art
in program specialization is limited to the specialization of components. As a
result, the placement of code guards cannot be detected automatically.

The author believes that a holistic approach to program specialization based
on recently developed precise and scalable program analyses [23, 74] will allow
this aspect to be handled automatically.

• Aspects of protocol stacks not covered. We have not covered two aspects of pro-
tocol stacks: (i) The receive functionality, as it is difficult to associate incoming
packets with application contexts early enough to effectively apply optimiza-
tions. (ii) Functionality implemented in the device driver, such as interrupt
handling and interaction with the hardware. For the former, the approach of
lazy receiver processing [24] can be made to identify the context of incoming
packets early. As for the latter, network device drivers would need to be stud-
ied and characterized to identify activities such as DMA transfers and on-card
buffer management.
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Chapter 4

Remote specialization

Generic Operating Systems (OSes) such as Linux, FreeBSD and Windows have
become a natural choice for embedded systems, owing to their consistent and stable
support for industry standard hardware and software. The Annual Embedded OS
Surveys [21] envisage that proprietary, hand-customized OSes will be phased out in
the coming years, supplanted by generic OSes. These surveys have also noted an
increase in the number of “in-house” versions of generic OSes.

These in-house OSes for embedded systems are generally tailored to minimize the
amount of space wasted in the run-time footprint and speed up execution. The cus-
tomization process aims to eliminate unnecessary functionalities and instantiate the
remaining ones with respect to parameters of the device-usage context. This process
typically consists of propagating configuration values, optimizing away conditionals
depending on configuration values, replacing expensive indirect function invocations
with direct ones etc. The narrower the range of usage scenarios for an application,
the further the customization process can be pushed. Examples of hand-optimized
OSes from the industry include Linux for the Linksys wireless routers, Tiny Linux,
Small BSD, PicoFreeBSD etc.

Still, this pragmatic approach to developing OSes falls short of keeping pace with
the rapid evolution of hardware features, environment characteristics and function-
alities of new applications. Indeed, the process of manual customization is tedious,
error-prone, and causes a proliferation of OS versions. Also, more fundamentally, the
embedded OS is increasingly removed from its original generic version over the course
of its evolution, creating a separation between these two worlds.

Some of these limitations are overcome with the use of preprocessors. For example,
the kbuild package of Linux provides a preprocessing tool that allows a programmer
to select the components of the OS that he would like to have available in the system.
Unfortunately, such tools run at the component level, and are too coarse-grained to
effectively adapt the system to the precise usage context envisaged. As a result, this
gap between what is desired and what current configuration systems offer is bridged



31

through manual refactoring of code. The market for this activity, commonly referred
to as Device Software Optimization, is estimated to outgrow the corresponding one
for embedded systems in the coming years [46].

Program specialization perfectly matches the requirements of this process as it
provides a high degree of automation and produces results that are verifiably correct.
It also provides a means to reconcile the development of an OS in the context of
a specific embedded application with its general development by providing reusable
program transformations. Since the same specializations can be applied to code that
differs across versions as long as it retains invariants in the algorithms implemented
by the code, a specific customization strategy can be ported to a new version of an OS
with minimal effort. Specialized code is significantly smaller in size and often more
efficient than its generic counterpart. Furthermore, specialization is fine grained, and
can sometimes lead to optimizations that are out of the reach of even the expert
programmer.

The use of program specialization on embedded systems faces four main obsta-
cles. First, the specialization engine must be able to reuse off-the-shelf embedded
compilers without imposing additional restrictions on the code-generation process
(such as disabling optimizations to make a program amenable to run-time specializa-
tion). Research has shown that the benefits of specialization are severely undermined
if the code generation engine (eg. register allocation) is not optimum. Second, spe-
cialization is a heavy-weight process and may be unduly resource-intensive for an
embedded class system. Third, critical functionalities in embedded systems are often
implemented in the kernel of the Operating System. Thus, a mechanism must ex-
ist to permit the dynamic deployment of automatically specialized versions of these
functionalities. Finally, the last challenge is to be able to reuse an existing program
specializer. A program specializer, like an optimizing compiler matures through years
of evoluation. Thus, it is important to allow the reuse of an existing one.

In this chapter, we present a specialization infrastructure for embedded systems
that meets all of the above requirements. We have designed a framework for run-time
specializing systems code. Our goal is to allow the base of an embedded system to be
lightweight, consisting only of those functionalities that are required at startup time,
and be enhanced on demand using specialized functionalities that are smaller and
more efficient. The main elements of our framework, namely, the compiler and the
specializer, are pluggable. I.e., an off-the-shelf specializer or compiler can be used.
We advocate a form of continual specialization of an embedded system that is invoked
when services are configured or launched. To do so, our approach is to run-time spe-
cialize program modules of an embedded system remotely on a specialization server.
This specialization occurs on-demand, as early as concrete values become available for
the run-time context of the target module. Because the embedded system delegates
specialization to the specialization server, it does not incur any major overhead in
either processing time or memory space. Although the embedded system is required



4.1. REMOTE SPECIALIZATION: A BIRDS-EYE VIEW 32

to be network-enabled, issuing a specialization request and uploading the specialized
module do not require much bandwidth in practice, in order for specialization to
be effective. The OS-kernel API of system calls, is used by applications to request
specialized code.

From a tool-chain developer’s point of view, a specific specializer and a com-
piler are selected and linked into the framework. From an OS developer’s point of
view, specific OS functionalities are indicated to be specializable and annotated with
binding-time information to be used by the specializer during analysis. From an ap-
plication programmer’s point of view, a specialized version of an OS functionality may
be requested as early as concrete values for a specialization context become available.
For example, in an application that sends data over the network, the specialization
context consists of values such as the IP address of the destination, the TCP ports,
congestion-control parameters associated with the transmission, the packet size etc.

When an application running on a device issues such a specialization request, the
specialization context is sent over the network to a remote specialization server. This
server invokes a specialization engine with both the corresponding systems module
and the specialization context. Specialization automatically produces the optimized
module that is then sent to the embedded device to be loaded and used. Remote
specialization is the most effective in the case of long running applications, when the
initial effort required to obtain specialized code can be amortized through prolonged
used of the specialized functionality. Some examples include embedded network
servers (like HTTP servers), embedded packet processors, audio and video codecs,
and compression algorithms.

Outline

The rest of the chapter is organized as follows. Section 4.1 gives an overview of
the process of remote specialization from the developers’ point of view. Section 4.2
presents the infrastructure needed to specialize code remotely on a specialization
server. Next, in Section 4.3, we discuss some of the limitations of remote specialization
and bring out some aspects that are orthogonal to the presentation thus far. Finally,
Section 4.5 concludes the chapter.

4.1 Remote Specialization: A birds-eye view

In this section, we give an overview of remote specialization in practice from the
point of view of the (i) Programmer and (ii) the OS developer.
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#include <remote spec / send . h>
#include ” s o c k e t i n c l ud e s . h”

int main ( )
{

int sock ;
struct sockaddr in addr ;
char to send [ 1 0 2 4 ] ;
union s end s c ena r i o params ;
int token ;

i f ( ( sock = socket (AF INET , SOCK STREAM, 0) ) == −1)
{

per ro r ( ” e r r o r c r e a t i ng socket ” ) ;
e x i t ( 1 ) ;

}

/∗ Our s e r v e r to which we want to send the data c o l l e c t e d ∗/

bzero(&addr , s izeof ( addr ) ) ;
addr . s i n f am i l y = AF INET ;
addr . s i n p o r t = htons ( 1080 ) ;
addr . s in addr . s addr = ine t addr ( ” 192 . 1 68 . 0 . 1 ” ) ;

/∗ F i l l in t h e s p e c i a l i z a t i o n s t r u c t u r e ∗/
params . sc1 . fd = sock ;
params . sc1 . f l a g s = 0 ;
params . sc1 . tcp mss = 1448;
params . sc1 . sack = 0 ;
params . sc1 . nag le = 0 ;
params . sc1 . b lock = 1 ;
memcpy( params . sc1 . dest addr , addr , s izeof ( struct addr ) ) ;

/∗ r e q u e s t f o r t h e code to be s p e c i a l i z e d ∗/

i f ( connect ( sock , ( struct sockaddr ∗) &addr , s izeof ( struct addr ) ) == −1)
{

per ro r ( ” e r r o r e s t a b l i s h i n g connect ion \n” ) ;
e x i t ( 1 ) ;

}

i f ( ( token=do s p e c i a l i z e s e nd (&params ,1))==−1) {
per ro r ( ” e r r o r s p e c i a l i z i n g code\n” ) ;

}

params . a l l . buf = to send ;
while ( r ead data to s end ( to send , 1024)) {

s p e c i a l i z e d s e nd ( token , &params ) ;
}

don e s p e c i a l i z e s e nd ( token ) ;
c l o s e ( sock ) ;

}

Figure 4.1: Requesting and using a specialized functionality.

{
struct socket ∗ sock ;
char address [ 1 2 8 ] ;
int e r r ;
struct i ovec iov ;
struct socket ∗ return tmp 0 ;

{
int ∗ s o c k f d l o okup 0 e r r ;
struct socket ∗ sock fd l ookup 0 re turn tmp 0 ;

s o ck f d l o okup 0 e r r = &er r ;
s ock fd l ookup 0 re turn tmp 0 = ( struct socket ∗ ) 0 ;
return tmp 0 = sock fd lookup 0 re turn tmp 0 ;

}
sock = return tmp 0 ;
return e r r ;

}

Figure 4.2: A fallback functionality.
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Figure 4.3: From an application developer’s point of view.

4.1.1 From A Programmer’s Point of View

An application programmer can request the specialization of a given OS module
that has been made specializable prior to the deployment of the system. A module
can be specialized when the context in which it is going to be used becomes known.
This context corresponds to a fixed set of parameters associated with the module,
which are determined when the module is made specializable at deployment time.

Figure 4.3 gives an overview of this process. An application computes a special-
ization context in anticipation of a particular usage of an OS module. For example,
an application that is going to send a file over TCP may specialize the TCP/IP
stack with respect to parameters associated with the transmission session, such as
properties of the sender and the receiver. Once this context becomes known, it uses
it to fill in a specialization request structure, and uses a library function to issue a
specialization request. This specialization request is intercepted by the specialization
sub-system in the OS kernel, which checks for the availability of the specialized code
fragment in a cache, and in the event of a cache miss, invokes the specialization engine
on the remote specialization server. When the remote specialization server returns
the specialized code corresponding to the given request, the specialization sub-system
loads it in the kernel of the embedded device. This code can now be invoked by the
application, or by other kernel functionalities.
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Specifically, the support libraries provide a C language macro corresponding to
each specializable module in the system. For example, when the send system call of
the TCP/IP stack is made specializable, a corresponding macro called do_specialize_send

is included in the support library. This macro is invoked by applications that use the
send system call with the specialization context corresponding to this module, con-
sisting of a file descriptor, the destination address of the packets, the protocol to
use and associated flags and socket options. For some modules, it may be possible,
as decided at deployment time, for more than one specialized instance to be active
at a time. The specialization of such modules returns a specialization token to the
application, which uniquely identifies the specialized instance of the module that has
been made available to the application.

Along with the macro to invoke specialization, the support library also includes
a macro to invoke specialized functionalities. In the send example, a macro called
specialized_send invokes the specialized version of the send system call, with the
same semantics as those of its generic counterpart, with the minor difference that
it takes the specialization token as an additional argument, identifying the specific
instance of the specialized code used.

Although the provision to allow many specialized instances of a single module to
exist at once is necessary in the context of select system calls like send, we do not
expect it to be used extensively in practice. In cases in which the usage patterns of
different applications on a system entail different specialized versions of a particular
functionality, it is usually more pragmatic to modify the specialization context to
accommadate all these patterns in a single instance or a small set of instances of
the specialized code. Doing so has the incidental benefit of reducing the latency of
specialization for applications requesting the second and subsequent instances of the
functionality, as they can be retrieved from the code cache.

An application may respond to the failure of a specialization request in two ways:
(i) by deferring the specialized functionality (in the case of a network error) and (ii) by
using a fallback version of the functionality, specified at the time of OS-deployment.
This fallback version is compiled manually by the OS developer, and can be a deeply
specialized version of the module it substitutes (such as one that implements an error
path) or an equivalent hand-coded module. In the send case, the fallback version of
a functionality is installed using the do_default_send call. Figure 4.2 displays an
example of an error path generated through specialization.

Lastly, when the specialized system call is no longer needed, the application can
release the token by passing it to the function done_specialize_send, also included
in the specialization support library. Doing so decrements a reference count corre-
sponding to the specialized instance of the functionality. When this reference count
decreases to zero, the specialized module becomes eligible to be unloaded to reclaim
the memory occupied by it.

Figure 4.1 illustrates an application that requests a specialized version of the
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TCP/IP stack to send fixed-sized blocks over TCP. Lines 26-32 fill in the specializa-
tion context to be used in a scenario that allows the programmer to freeze the file
descriptor, the destination address, send flags and some of the connection properties.
These scenarios are defined à priori by the developer who has made the system spe-
cializable. A null context (sc0) is also made available to indicate that the generic
version of the source code is requested. Next, lines 42 and 46 request the specialized
code and invoke it, respectively.

Along with calls to request and release specialized code, we have also implemented
calls that can be used to police the specialization sub-system. Of these, one stands out
as worth mentionning: make_local_system instructs the specialization subsystem to
use a null context for all specialization requests, ignoring the specific contexts specified
by various applications. The result of invoking this routine is that in a matter of
seconds, the embedded system becomes independent of the remote specialization
server.

4.1.2 From an OS developer’s point of View

In this subsection, we start by summarizing the role of the OS developer and then
explain the procedure used to program the specializer.

Summary

An OS developer is set with the task of describing the environment in which the
embedded system is going to be used to a set of program-analysis tools. The tools
include the specializer and a stub generator, which configures the support libarary to
be used on the embedded system. Overall, the role of the OS developer amounts to
performing three tasks: (i) Selecting the functionalities to be made specializable. (ii)
Annotating the code implementing these functionalities to declare binding-time in-
formation defining the anticipated usage contexts. (iii) Executing the specializer and
a stub generator that has been implemented as part of our framework, to obtain the
client and server side data required to request and generate specialized functionalites.

The specific mechanism to specify the binding-time information depends on the
program specializer used. We have used two specializers in this project. The first of
these, Tempo [20], provides a declarative programming language to specify binding-
time information. The second whose development is currently underway, accepts
binding-time information directly in the program itself, in the form of C language
attributes. For the sake of clarity, the excerpts of specialization contexts in the form
of binding-time information we give in this chapter will be in the declarative language
of Tempo. A detailed description of this language is available for reference [42]. In the
rest of the section, we give an overview of the process of describing to the specializer
the specialization contexts pertinent to the embedded system.
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From socket . c {
malloc : : extern malloc (S(unsigned int ) s i z e ) ;
msghdrg : : msghdr ( struct msghdr ) msg ;

s o c k f d l o o kup s t a t i c : : extern sock fd lookup (S( int ) fd ) ;
move addr to kerne l : : extern move addr to kerne l (D(void ∗) uaddr ,

S( int ) ulen ,D(void ∗) kaddr ) ;
sock fd put connected : : extern sock fd put ( socket ( struct socket ) S (∗ ) sock ) ;
ip cmsg send : : extern ip cmsg send (msghdr ( struct msghdr ) D(∗ ) msg ,

ipcm cookie ( struct ipcm cookie ) D(∗ ) ipc ) ;

sock sendmsg connected : : i n t e rn sock sendmsg connected ( socket ( struct socket ) S (∗ ) sock ,
msghdr ( struct msghdr ) D(∗ ) msg , S(unsigned int ) s i z e ) {
needs {

scm send ;
scm destroy ;
inet sendmsg connected ;

}
} ;

s endto connected : : i n t e rn sy s s endto (S( int ) fd , D(void ∗) buf f , D( int ) len ,
S(unsigned int ) f l a g s , sockaddr ( struct sockaddr ) S (∗ ) addr , S( int ) addr l en ) {
needs {

msghdrg ;
sock fd lookup ;
move addr to kerne l ;
sock sendmsg connected ;
sock fd put connected ;

}
} ;

}

Figure 4.4: A fragment of the binding-time annotations for the send system call

Preparing the specialization server

Figure 4.4 illustrates an example of binding-time declarations for the Tempo C
specializer [20] for the sendto system call. These declarations correspond to a scenario
in which the file descriptor corresponding to a socket and the destination address of
the packet stream are known. Next, Tempo is invoked to generate specialization code
templates that will reside on the specialization server. These templates will be filled
in with concrete values constituting the specialization context when a specialization
request is issued by an embedded system. An entry point is generated for each
scenario.

Once the specialization templates have been generated, they must be introduced
into the remote-specialization infrastructure. Specifically, two aspects of the execution
of the system depend on these templates. First, the support library contains C-
language unions that are dedicated to specific specialization scenarios. These unions
are filled in by the application request specialization and are encoded as specialization
requests. Second, specialization requests sent to the specialization server identify the
scenario to be used. Thus, the specialization server needs to look up the scenario
addressed by a given incoming request. Figure 4.5 illustrates a configuration fed to
the stub generator, specifying the send and tux system calls to be specializable, and
specifying the specialization scenarios that they entail.
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SYSCALLTABLE s y s c a l l t a b l e {
source=”arch / i386 / ke rne l / s y s c a l l s . i ” ;

}

SYSCALL send {
NR = 73 ;
SCENARIO sc1 {

source=” s c ena r i o s / send connected . c” ;
mdl=” s c ena r i o s / socket connected . mdl” ;

}
}

SYSCALL tux {
NR = 201;
SCENARIO sc1 {

source=” s c ena r i o s / tux . c” ;
mdl=” s c ena r i o s / tux http . mdl” ;

}
}

Figure 4.5: Configuration information provided to the stub generator

4.2 Specialization Infrastructure

From a high-level, the specialization infrastructure may be viewed along two tax-
onomies: (i) the location of functionalities (server-side or device-side) and (ii) the
scope of functionalities (application-specific or application-independent). Device-side
functionalities allow applications to request code to be specialized and to invoke the
specialized code once it is available. Server-side functionalities receive specialization
requests from the client, generate specialized code and transmit it to the client. A
functionality is application-specific if it has been generated specifically for a particular
device environment (i.e., an embedded application). It is application-independent if
it is used unmodified for different device environments. Figure 4.2 lists the function-
alities constituting the specialization infrastructure and classifies them on the basis
of these criteria.

In the rest of this section, we first give a functional overview of the infrastructure,
describing the role of each component as the application requests and uses specialized
code, and then present each of the components in detail.

4.2.1 Functional overview

A typical scenario in which an application requests and invokes specialized code
is illustrated in Figure 4.3. We explain the device-side and server-side functionalities
of the process separately.

Device-side functionality

On the device-side, an application identifies a functionality to specialize and com-
pletes a user-level specialization request structure, filling in the concrete values of the
desired specialization context. It then passes this specialization request structure in
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Unit Location Scope
User support functions Device App-specific

Kernel support functions Device App-specific
Client-side kernel extensions Device App-independent

Context dependencies Device App-specific
Code manager Device App-independent
Helper process Server App-independent

Specialization templates Server App-specific
Specializer and compiler Server App-independent

Run-time layer Server App-independent
TCP client Client App-independent
TCP server Server App-independent

Figure 4.6: Taxonomy of functional units of the specialization infrastructure

an invocation to a library macro from the user support functions. This macro in turn
expands into a unique system call, do_specialize implemented as part of the client-
side kernel extensions. The function of this system call is to wrap the remaining steps
of the remote specialization: composing a full specialization context, transmitting it
to the specialization server and intercepting the response sent by the specialization
server. In the first step, a kernel-level specialization request structure is composed,
incorporating the values passed in the user-level version of the structure, and adding
other specialization values only available in kernel context. For example, for the the
send system call, parameters that are only available to low level network functionality
such as pointers to connection-specific data structures, values like the TCP MSS etc.
are extracted here. Once the specialization context has been fully defined and pack-
aged in a data structure, the code manager is queried to check if the code required is
already available in the specialized-code cache. Upon a cache hit, the code manager
returns an address record corresponding to the location of the specialized code, and
the do_specialize system call links it into the process requesting the specialization.
In the event of a cache miss, a full remote request must be executed. The complete
specialization request structure is passed to the TCP client unit, which serializes it
into a text message and transmits it to the specialization server.

Server-side functionality

The TCP server unit on the specialization server receives the specialization re-
quest and invokes a helper process, which is the counterpart of the kernel extensions
on the client side, and which pilots the stages of specialization that are executed on
the server. The helper process uses the received specialization context to configure
the run-time virtualization layer. The aim of this layer is to emulate a limited device-
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Name Function
do˙specialize˙send Request specialization of module
re˙specialize˙send Renew a specialized module for a new context
specialized˙send Invoke the specialized version of send
do˙default˙send Invoke the fallback version of send
done˙specialize˙send Release specialized module

Figure 4.7: User-support functions for the TCP/IP stack.

side environment on the server side, letting a specializer believe that it is functioning
on the same system as the one for which it is generating specialized code. Next, the
specializer is invoked through this run-time layer to generate the specialized code,
and a compiler is used to compile it into efficient binary code. This binary code is
checked into a server-side code cache, and returned to the device via the TCP server.

4.2.2 Detailed descriptions

User support functions

The user support functions are entry points into the specialization subsystem on
the device and are generated separately for each application at system-deployment
time. Figure 4.7 gives a list of these functions for the send system call. Each of
these functions is a wrapper for a system call, passing an enumerated identifier of the
specific functionality being specialized (in this case, send).

Kernel support functions

Other than the user-level stubs mentioned above, certain kernel-level functionali-
ties are also application-specific and are generated separately for every module. These
stubs define mappings that convert the specialization context from one format to the
other: eg., from the internal kernel representation into an ordered list of values that
is passed to the specialization server, from the internal representation to an argument
list at the time specialized functionality is invoked etc. In the following text, functions
that have the prefix APP_ belong to this category.

Client-side kernel extensions

The kernel of the client-side device is extended with four system calls that al-
low specialized code to be requested, released, invoked and regenerated. These are:
do_specialize, done_specialize, specialized, and respecialize. Sugared ver-
sions of the implementation of these system calls are given in Figures 4.2.2, 4.2.2
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and 4.2.2. The specialization context passed between layers is represented as C-
language unions, in which each overlapping component represents a specialization
scenario. These scenarios vary in richness, with the most general context, sc0, rep-
resenting the generic version of the code. The use of this context has been described
in Section 4.1. At specialization time, this context is collected in two stages: a first
stage in which the values specified by the user are copied, and a second stage that
extracts the values of kernel variables which the current specialization scenario is de-
fined to depend on. Thus, values in the kernel that are not directly set by the user,
but which are part of the specialization context are collected in the second stage by
an application-specific function. Once both the components of the full specialization
context have been collected, they are used to check if the corresponding specialized
code is already present in the code manager’s code cache. If so, a token structure
is filled with values of the module identifier and a reference to a descriptor of the
specialized code. A unique id identifying this token is returned to the application for
it to refer to the specialized code later on. If the code manager advertises a cache
miss, then the combined specialization context is passed to the TCP client, which
serializes it and transmits it to the specialization server.

4.2.3 Code manager

The main responsability of the code manager is to manage the specialized code
cache. This amounts to implementing three functionalities: querying the availability
of a specialization, caching newly specialized code and evicting code depending on the
specific code management policy used. We have implemented two hashing schemes: a
lightweight one that performs well with small numbers of specialized code instances,
and a heavyweight one that is advantageous when the number of specialized instances
is large. The former uses a single value from the specialization context as the hash key.
The latter uses a 10-word tuple for the same. In both cases, the specific specialization
values to use to compute the hash index are selected by the OS developer. In the
second case, the CRC32 function is used on 8 words from the specialization context,
and a two-word constant specific to the specialization scenario. This scheme improves
the distribution of hash values for functionalities that share specialization parameters.

The code manager also implements a code-eviction mechanism. This mechanism
is implemented by the function wakeup_code_GC and evicts code from the cache from
time to time to reduce the size of the working data set of the system. It is invoked
from the function code_cache_release when the reference count of a code descriptor
decreases to zero. The specific strategy used in this mechanism can be aggressive and
quickly reclaim any code that does not have any users. At the other extreme, it may
retain the code indefinitely, reclaiming only when the memory management subsystem
signals memory pressure by raising an OOM (out-of-memory) event.
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s y s c a l l s y s d o s p e c i a l i z e ( id , s cenar io , u s e r sp e c c on t ex t )
{

/∗Vi r t u a l add r e s s o f s p e c i a l i z e d code ∗/
v i r t u a l a dd r e s s addr ;

/∗ S p e c i a l i z a t i o n c o n t e x t s ∗/
spec contex t use r context , k e rn e l c on t ex t ;

/∗Wait queue to wa i t f o r s p e c i a l i z e d code ∗/
wait queue wq ;

int r e t=SPEC ERROR;

/∗ Di s a b l e i n t e r r u p t s on cu r r en t p r o c e s s o r to
∗ f r e e z e system s t a t e ∗/

c l i ( ) ;

/∗ Bui ld comp le t e c on t e x t ∗/
use r con t ex t = copy f rom user ( u s e r sp e c c on t ex t ) ;
k e rn e l c on t ex t = pu l l c on t ex t dependenc i e s ( id , s c ena r i o ) ;
l i s t a d d ( u s e r con t ex t . l i s t h e ad , k e rn e l c on t ex t ) ;

/∗ Check code cache in t h e code manager
∗ and increment r e f c o un t i f found ∗/

addr = code cache put ( id , s cenar io , u s e r sp e c c on t ex t ) ;
i f ( addr == NULL ADDRESS) {

TCP spec request ( id , s cenar io , use r context , wq ) ;

/∗ Wait f o r s p e c i a l i z e d code to r e t u rn and be woken up
∗ by t h e TCP c l i e n t ∗/

s l e ep unt i l woken up (wq ) ;
addr = code cache put ( id , s cenar io , u s e r sp e c c on t ex t ) ;

}

i f ( addr != NULL ADDRESS) {
token cur ;
cur = cur r en t p roce s s−>f r e e t o k e n l i s t ;
cu r r en t p roc e s s−>f r e e t o k e n l i s t=LIST NEXT( cur r en t p roc e s s−>f r e e t o k e n l i s t ) ;
cur−>address = addr ;
cur−>id = id ;
cur−>s c ena r i o = sc ena r i o ;
r e t = cur−>counter ;

}

/∗ Res tore i n t e r r u p t s ∗/
s t i ( ) ;
return r e t ;

}

Figure 4.8: Code excerpt: do˙specialize

s y s c a l l d o n e s p e c i a l i z e ( counter ) {
token tok ;
tok = cur r en t p roc e s s−>s p e c i a l i z a t i o n t o k e n s [ counter ] ;
down semaphore ( tok−>code sem ) ;
tok−>id = 0 ;
c od e c a ch e r e l e a s e ( tok−>address ) ;
up semaphore ( tok−>code sem ) ;

}

Figure 4.9: Code excerpt: done˙specialize
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s y s c a l l s p e c i a l i z e d ( id , counter , context ) {
token tok ;
int r e t = SPEC ERROR;

tok = cur r en t p roc e s s−>s p e c i a l i z a t i o n t o k e n s [ counter ] ;
i f ( token−>id == id ) {

/∗ Invoke a p p l i c a t i o n−s p e c i f i c f u n c t i o n to s e l e c t
∗ and pass arguments depend ing on ’ i d ’ and the s c ena r i o
∗ used ∗/

r e t = APP invoke ( id , token , context ) ;
}
down semaphore ( tok−>core sem ) ;
return r e t ;

}

Figure 4.10: Code excerpt: specialized

4.2.4 Helper process

If the requested code is not present in the code manager, it is requested of the
specialization server. A helper process drives specialization from thereon, invoking
the run-time layer, specializer and compiler for each incoming request. Concretely,
it retrieves the specialization context, uses it to create a new run-time context and
launches the specializer through it. The need for this additional layer, and the purpose
it serves are discussed next.

4.2.5 Run-time layer

Operating Systems code uses aggressive use of pointer variables. As a result of this,
pointer variables often figure in specialization contexts and can be computed to be
constant by the specializer, which then proceeds to inline their values. Furthermore,
computations involving the pointer variable can also be statically computable. When
the code is specialized locally, this step does not pose a problem, since the values
assigned to the pointers and the values they reference are available locally as well.
In remote specialization, an explicit mechanism must be implemented to give the
specializer access to these values.

To facilitate the reuse of an existing specializer unmodified, we create a virtual
layer on the specialization server, which emulates the embedded system’s environ-
ment. Since the specializer only interprets computations depending on static values,
only these values must be emulated on the specialization server. The run-time layer
protects its virtual memory in such a way as to induce memory exceptions to be gen-
erated every time a static pointer is dereferenced. The specializer is then launched on
the code in this context. When this exception is received, the run-time layer intercepts
it, interprets the faulting instruction to load the actual value of the pointer derefer-
ence in the remote specialization server and reinstantiates execution from the next
instruction onwards. We briefly describe the actual implementation of this feature.

We take a concrete example of an instruction that requires the dereference of
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a device pointer. For example, in the instruction mov eax, c021cca0, the address
c021cca0 lies in device memory. Since the binding-time analysis performed by the
program specializer at OS-deployment time marks this pointer as being static in the
considered scenario, the run-time layer has received its concrete value in a remote
specialization request. The virtualization mechanism must somehow provide this
value to the specializer when the instruction is executed.

The run-time layer protects the pertinent memory locations by revoking process
access to them. When the specializer executes the above instruction, a CPU excep-
tion is generated and is conveyed to the process context of the run-time layer and the
specializer as a SEGV signal. This signal carries the address of the faulting instruc-
tion along with the state of the registers prior to the error in a data structure names
pt_regs. In UNIX, the SEGV signal can be handled in two ways: by terminating
the faulting process or by rectifying the error that led to the exception. We opt for
the latter by interpreting the instruction using the values received in the specializa-
tion request and by incrementing the instruction pointer to proceed to the following
instruction.

4.2.6 Specialization templates

The majority of the effort in rending a subsystem specializable goes into annotat-
ing the code to specify specialization invariants. A brief introduction of this process
was provided in Section 4.1.2. In this section, we reconsider the example taken up in
Figure 4.4 and study it in greater detail.

The code excerpt illustrated in this figure describes specialization scenarios for
various functions involved in the send system call implemented in the file socket.c. For
example, the scenario sockfd_lookup_static describes a scenario for the function
sockfd_lookup in which the only parameter, namely the socket descriptor is defined
as static and invariant. This function routinely looks up the socket data structure
that summarizes protocol and system-level information on the socket from a table
indexed by the file descriptor. Thus, a static file descriptor entails that the reference
to this data static an invariant.

The socket descriptor is also marked static in the entry point into the sendto

system call, as part of the scenario sendto_connected. Other arguments that are
marked as static and invariant are the socket flags (the argument flags) and the
destination address (the argument addr).

4.2.7 Specializer and compiler

We have used two specializers in this project. The first is the Tempo C special-
izer, which is configured as described in the previous subsection. The second is a
new specializer that we are currently implementing, which simplifies the activity of
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Figure 4.11: Remote specialization infrastructure

binding-time analysis through a more precise program-analysis engine by reducing
the amount of redundant binding-time information to be provided by the program-
mer. Other than the method of specifying binding-time information and performing
binding-time analysis, the optimizations enabled by this specializer are equivalant to
those performed by Tempo.

The decision to generate code in two passes, first generating specialized C tem-
plates and then optimized native code allows us to use an optimizing compiler. Pre-
vious works that have achieved run-time specialization have operated directly at the
binary level, entailing the use of native code generators that were not as effective as
dedicated optimizing compilers. Specifically, we have used the gcc 3.2 compiler. The
specialized code in the experiments was compiled with the option -O2.

4.2.8 TCP client and server

The TCP client and server implement the distributed interface between the em-
bedded device and the specialization server. On the server side, the TCP server
is a multiprocess application implemented in OCaml that receives specialization re-
quests, decodes them and passes the decoded parameters to the helper process. On
the embedded device, the TCP client constructs a specialization request based on
the specialization context extracted by the context manager. The TCP client uses a
statically specialized instance of the send functionality of the TCP/IP stack. Host
IP addresses, which are part of the specialization context, are specified at device-
deployment time.
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4.3 Discussion

4.3.1 Specialization latency

Performing specialization on-demand may increase the latency of system calls, as
there is some processing that must be performed before normal operation can resume.
We have quantified this potential latency in Section 3.3 for our current setup.

Experiments show that such a latency may be eliminated in practice because the
specialization context often becomes available early enough to allow the specialized
code to be generated and loaded by the time the specialized system call is invoked.
In the following, we propose strategies to amortize or eliminate this latency.

Specializing in advance. specialization may be performed in advance, anticipating
that a system call be used in a particular context. For example, when an FTP
session is opened, under normal circumstances, specialization would be invoked when
the connect system call is invoked to open a TCP connection. To reduce latency,
specialization can be performed between the time that the destination IP address
and port are specified, and when the user has entered the login information and
password.

Using conservative specialization contexts. When making system calls specializ-
able, the systems programmer may define a conservative specialization context to
enable specialization to be triggered earlier. As a by-product, this strategy allows
specialized code to be shared across different applications running on the device.

Exploiting the intrinsic latency of system calls. Specialization is typically triggered
when a session is opened (e.g., in the case of a socket connect). At this stage, parts
of the specialization context become known.

We can exploit the time taken by the system call to actually create the session
to perform the specialization. As an example of this latency, the time taken for a
TCP three-way handshake is twice the round-trip time (RTT) of packets between two
hosts. This can range from a few milliseconds in high-speed networks to the order of
one or two seconds over certain radio links such as GPRS.

4.4 Discussion

In this section, we discuss two key issues required to scale up the application of
our approach to an operating system.

4.4.1 Applicability of our approach

The application of program specialization to OS subsystems is not new. Pu et. al
have demonstrated the successful application of specialization to two important OS
subsystems, namely, filesystems and signals [59, 49]. In principle, specialization can
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be applied to any subsystem which can be invoked as a closure of a set of configuration
values. In filesystems, this closure is created when a file is opened, and associated with
a file descriptor. When an operation is invoked on this file descriptor, it is carried
out in the context of the values saved in the associated closure. In the network
subsystem, the socket descriptor usually plays the role of identifying a closure. One
of the problems encountered in these previous works [59, 49] was the lack of such a
relation in the signals subsystem. The problem was solved by adding an identifier,
last_sig_to, in the task structure of every process to represent the context which
was used for specialization.

We generalize this solution by associating specialization with a specialization to-
ken. The context referred to by this token, which is specified at the time the system
is engineered for specialization, is collected by the context manager at specialization
time.

Note that although we provide the provisions necessary to make any given sub-
system amenable to specialization, the actual activity of specialization is not trivial,
and needs to be considered separately for every subsystem in question.

4.4.2 Module dependencies

Modules in OS components often have dependencies that mandate that they have
certain features in order to interoperate. The question that arises in the context of
our work, then, is whether specialization may break interoperability in some way.

One aspect of the question is addressed by program guards, discussed earlier. If a
given module were to access a feature of another module that has been specialized out,
then it would hit upon the corresponding program guard installed for the invariant
that was used to specialize the feature out. This situation, in effect, makes it critical
that a thorough analysis of the module to be specialized be done, and that all possible
violations of the invariant be protected by guards.

Another aspect of this question, which involves the composition of specialized
components in operating system has not been addressed in the literature. Dominic
Duggan provides some insights into this issue in his work on the Type-based hot
swapping of running modules [25]. We will consider his solution, and this problem in
general in future extensions of this work.

4.5 Conclusion and Future Work

In this chapter, we have introduced a client-server model for specialization aimed
to allow an embedded system, with limited resources, to use specialization, on-demand
at run time. This work enables embedded system to run highly specialized code
without incurring the cost of running a specializer. Remote specialization opens up
new opportunities as demonstrated by our case study, namely, the specialization of
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the TCP/IP stack of an embedded system. We have defined an interface enabling
specialization to be introduced in program development.

An infrastructure based on the client-server model for specialization has been im-
plemented. This infrastructure has been validated on a TCP/IP case study. The
specialized version of this protocol stack has exhibited significant improvements in
terms of code size, execution time and throughput. It has been observed that re-
mote specialization overhead can be absorbed by a number of aspects such as user
interaction and session initiation steps.
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Chapter 5

Memory-manager/Scheduler
Co-design

The trends of hardware evolution over the past two decades have introduced a
wide gap between microprocessor speeds and memory access times. Memory access
times are often two to three orders of magnitude greater than the corresponding
compute latencies, and thus invariably become performance bottlenecks in programs
that manipulate sufficiently large data sets.

Concurrent programs such as network servers are the most common to suffer from
the memory bottleneck as a consequence of their concurrent treatment of large data
sets. The impact of this effect is aggravated by the fact that it is felt the most
when the workload size (i.e., the number of concurrent requests) is large, which is
when efficiency is needed the most. The use of large cache hierarchies coupled with
hardware and software techniques such as prefetching, symmetric multi-threading [26]
and cache-friendly data layout [15] can alleviate the situation appreciably. While
these techniques succeed in camouflaging memory latency in certain situations, they
do not always provide efficiency, and tend to become ineffectual when the concurrency
becomes sufficiently large.

We present a novel optimization approach for concurrent programs, based on the
co-design of a memory manager with a scheduler. In effect, this co-design introduces
cache-awareness into the scheduling algorithm. Our approach is the most effective on
programs for which the run-time footprint of a single task is guaranteed to be smaller
than the L2 cache size, as is the case in many high-performance network servers. In
this case, we take measures to prevent the working data set of the program from
overflowing this cache.

We apply our approach to network servers developed using the event-driven pro-
gramming paradigm. Event-driven programming has emerged as a standard to im-
plement high-performance servers due to its flexibility and low OS overhead. Indeed,
the commercially-available servers that are recorded to deliver the highest perfor-
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mance [22], such as TUX [43], Flash [58] and Zeus [44] for the HTTP protocol and
SER [32] for telephony, are event-driven.

The event-driven paradigm implements the processing of a task as a finite state
machine, in which the transitions between machine states are triggered by events.
This paradigm generalizes naturally to concurrent tasks, by implementing each task
as a continuation that records its own data and machine state. As compared to pro-
cess and thread-based programs that rely on the OS for scheduling, an event-based
program performs its own task management, permitting the use of specialized data
structures and scheduling strategies. Furthermore, in the event-driven paradigm, the
concurrency between tasks is controlled, as tasks can only be interrupted at event
handler boundaries, making it easy to reason about the code within an event han-
dler, as compared to the case of process and thread-based programs, where switching
between tasks can occur at any point. Finally, as compared to general event-driven
programs such as GUIs, event-driven servers have a highly deterministic execution, in
which one event handler typically sets up the next. This property makes it possible
to reason about task behavior across a sequence of events.

To conclude, we have chosen event-driven network servers for two reasons: (i)
They circumvent many of the traditional bottlenecks of servers pertaining to their
interaction with the underlying OS. This property helps us localize the memory-access
bottleneck in a way that is much better than what thread and process-based servers
would have allowed. (ii) They implement the scheduling algorithm in the program
itself, instead of relying on one implemented in the underlying OS. Although the
scheduler in the underlying OS has been made programmable by recent work [9, 41],
we do not require the elaborate infrastructure introduced in this context, as we do
not need to reason about the interaction between applications at the system level.
We restrict ourselves to the functioning of the specific application optimized.

Our optimizations are integrated into a server program through static analysis and
transformation of its implementation. We provide tools that automatically carry out
these operations in an event-driven C program that conforms to a memory allocation
and scheduling interface specified in this work. Legacy event-driven programs can be
modified to expose this interface using specific code annotations or by implementing
stub functions corresponding to those in our interface. The integration process then
consists of four steps. First, static analysis is used to identify the server’s memory-
usage behavior. Second, a customized memory allocator is generated according to
the size distributions and lifetimes of the data, identified in the first step. Third,
invocations of the original memory allocator in the program are replaced by invoca-
tions of the customized one. Finally, the scheduler is modified to use feedback from
the customized allocator to ensure that the total data set stays in a cache-aligned,
cache-sized region.

We present an evaluation of our optimizations in the context of two event-driven
HTTP servers: TUX and thttpd. Our experiments on a gigabit network comparing
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the performance of the servers before and after the application of our optimizations
show significant improvements in the cache-miss rate of the servers as well as the
server throughput.

In the rest of this chapter, as well as the one that follows, we will describe both the
problematic of the cache behaviour of concurrent network servers and our solution in
the context of event-driven programs. We begin by introducing the architecture of
event-driven servers.

5.1 Event-driven servers

This section gives an overview of event-driven servers, emphasizing their charac-
teristic structure. It also discusses their cache behavior, bringing out specific caching
inefficiencies and their impact on the server’s performance.

5.1.1 Overview

An event-driven program typically consists of a single thread that loops continu-
ously, processing a stream of events. Events may be generated on the occurrence of
some I/O, or issued explicitly by the program itself. Once intercepted, an event is
interpreted, and the tasks corresponding to it are considered for scheduling. Schedul-
ing a task amounts to executing the handler associated with the event in the task’s
current context. Once initiated, a handler runs uninterruptedly until completion. 1

Concurrency is managed in an event-driven program by representing each task as
a continuation consisting of the current task state and a pointer to the code to be
executed in response to the next event. This representation constitutes one of the
biggest differences between thread and process-based servers and event-driven servers.
While thread and process-based servers abstract task state as OS-level threads or
processes, event-driven servers store this state in concise application-specific data
structures, and are free to use and manipulate them as required.

Event-driven servers are distinguished from other event-driven servers such as
GUIs by their highly deterministic behavior. Typically, an event-driven server receives
a fixed sequence of events in the processing of a given request. For example, a HTTP
server first receives a request, then parses it, then processes it, etc. Accordingly, we
can view the structure of an event-driven server as a series of stages, as illustrated in
Figure 5.1.

Overall, the implementation of an event-driven server can be characterized by the
following elements:

1Various strategies such as event-coloring [73] and per-stage thread pools [72] have been explored
as a means to scale event-driven programs to multiprocessors. We are currently in the process of
exploring the extension of our work in these directions. In its current form, we assume a uniprocessor
system.
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Figure 5.1: An event-driven server.

• Stages: A stage is represented by a function and is bound to one or more
events. It has a small number of possible predecessor and successor stages. A
stage may allocate data for local use, and may allocate or use data that persists
over multiple stages. Before terminating, a stage queues zero or more successor
stages to be executed next.

• Tasks: A task represents the complete processing of a request. As such, it
defines an execution context for the server. This execution context includes
data that is shared by multiple stages of the task execution.

• Events: An event triggers the activation of a stage in a task context. Events
may be external and generated by I/O operations or internal and generated by
the program.

• Scheduler: The scheduler is the part of the server implementation that itera-
tively extracts stages waiting to be executed and executes them in their corre-
sponding task contexts. It is typically implemented by a designated function.

5.1.2 Performance of event-driven servers

When the amount of data manipulated by a server is more than the size of the
main memory, its throughput is limited by I/O activity such as disk reads. The
behavior of servers under such circumstances has been widely studied [58, 27]. When
the amount of memory available is sufficient to maintain this data, as is more often
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the case today, I/O is no longer a bottleneck. Then, the efficiency of the server
implementation plays a crucial role in the performance of the server. Two aspects of
the server implementation dominate its resulting performance: its interaction with
the OS and its behavior with respect to the underlying hardware caches.

The event-driven architecture has been shown to be highly successful in optimiz-
ing the OS-interaction aspect of servers [8] by eliminating the need to use threads and
processes to abstract tasks altogether, and facilitating the use of efficient OS primi-
tives for non-blocking operations. Once the bottlenecks associated with the scalability
of OS primitives have been removed, the overheads associated with memory accesses
become more important and can be observed to cause a significant degradation in
server performance.

In the following subsection, we will study the cache behavior of event-driven
servers on a highly efficient implementation of the event-driven architecture, namely,
the TUX web server. Through the TUX web server, we will study the influence of
the data cache on server performance.

5.1.3 Caching behavior

At any given time, the memory that is used by an event-driven server consists of
the data that is (i) live in the contexts of the various concurrent tasks, (ii) the global
state of the server, and (iii) the local data of the currently executing stage. When the
total size of this data exceeds the capacity of the cache, cache misses occur, resulting
in expensive main-memory accesses. The capacity of the cache depends on both its
size and its associativity, i.e., how many cache lines are available to represent a given
memory location.

We illustrate the cache behavior of an event-driven server using the program
shown in Figure 5.2(a). This program consists of five stages, each annotated with the
objects live in the stage. For objects that are dynamically allocated, the beginning
of its lifetime is marked by an explicit memory allocation and the end by an explicit
deallocation. For statically allocated objects, the lifetime can be seen as the time
between the first and last use of the object. In this program, we assume that all
objects are the same size, and that the scheduling is round-robin.

We consider the concurrent execution of four tasks, whose processing begins si-
multaneously, as illustrated in Figure 5.2(b). Each task allocates an O2 object in
its first stage. As this object is also used by stages 2 and 3, it becomes part of the
context of each task. Thus, at the end of the processing of the first stage the memory
requirement of the server consists of four instances of O2. Since the total size of these
instances is much smaller than the size of the cache, the data can be expected to
fit within it. The second and third stages allocate and then use the additional ob-
ject O1. Thus, between the second and third stages, the memory requirement of the
server consists of four instances of O2 as well as four instances of O1. This require-
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(a) Per-task state (b) Cache overflow

Figure 5.2: Per-task state during program execution
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Figure 5.3: Throughput degradation with increasing L2 cache misses.

ment exceeds the cache capacity. In this case, the state of the server can no longer
be maintained in the cache and must be spilled into memory, requiring expensive
memory accesses.

When a server is heavily loaded, memory traffic is high, and cache behavior can
degrade quickly. On a cache miss, an arbitrary data item is evicted. If this item is live,
which it is likely to be when the server is under heavy load, it will soon be reloaded,
probably evicting another live data item, leading to a domino effect. This degradation
in performance can be observed in practice. Figure 5.3(a) shows the change in the
L2 data-cache misses when running TUX as a function of the concurrency of the
workload (i.e., the number of concurrent requests in flight over the network).

The performance regime in Figure 5.3(b) consists of three regions. In the leftmost
region (marked ‘I’), throughput increases constantly as the latency of packets over
the network gives the server enough time to process the small batches of requests
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sent. Thus, increasing the number of concurrent requests uses up an increasingly
large fraction of this available latency. When the concurrency increases to an extent
that fully utilizes this latency, then the server begins to process multiple requests
concurrently (region ‘II’). We believe that the improvement in this region comes as
a result of improved instruction locality. The decreasing number of i-cache misses in
Figure 5.3(a) support this belief. In the third region (region ‘III’), we find that the
amount of data corresponding to the requests treated concurrently no longer fits in
the L2 cache. Thus, there is a steady increase in the number of L2-cache misses along
with a steady degradation in performance. Finally, in the fourth region, the server is
overwhelmed with requests and spends the majority of the CPU cycles available to it
in dealing with new requests. As a result, its throughput drops abruptly, and it fails.

5.2 Eliminating data-cache misses

Our goal is to eliminate cache misses in the largest cache present on the system,
i.e., an external cache (e-cache), or L2 cache in the absence of an e-cache. We find
this overhead to be the biggest bottleneck, and penalties arising due to L1 cache
misses less significant. Indeed, on most modern processors, the difference between
memory latency and L2 (or e-cache) latency is more than two orders of magnitude
greater than the corresponding difference between L2 and L1 cache latencies.

The working data set of an event-driven server comprises a stack, assumed to be
allocated statically, global data, which may be allocated dynamically or statically, and
per-task state, which is all data that is maintained within a stage or across multiple
stages. The per-task state typically makes up the bulk of an event-driven server’s
working set, and is thus the main target of our optimization strategy.

In this section, we give an overview of our optimization strategy in three parts.
First, we briefly describe the three main data regions that constitute the program
working set. Second, we give an overview of our cache-aware memory allocator, the
Stingy Allocator. Finally, we discuss the role of the scheduler in cache utilization,
focusing on adjustments in the scheduler to improve cache behavior.

5.2.1 The stingy allocator

The Stingy Allocator is the basis of our optimization strategy to improve the cache
behavior of a program. It controls where and how much memory is allocated to ensure
that the data items in the working data set of a program will not cause collisions in
the L2 cache. The control over where memory is allocated is obtained by allocating
memory from a memory region that is mapped directly to the L2 cache2 The control

2In our implementation for the Pentium II and Pentium III processors, aligning the memory
region with the cache amounts to reserving and using a physically contiguous range of memory of
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over how much memory is allocated is obtained by first analyzing the program to
determine its memory requirements and then laying out this required memory in the
cache-mapped region such that there are no cache collisions. All the components of
the server’s working data set are contained in this memory region. Furthermore, each
object is assigned an area in this region and a limit is imposed on the number of
instances of each object that are active at a time.

The Stingy Allocator manages a fixed number of each kind of object, and guar-
antees that as long as a program uses only these objects, they will not interfere with
one another in the cache. The Stingy Allocator must thus be configured by selecting
the number of each kind of object. This selection takes into account constraints on
the size of the cache, the set of objects used within a given stage, the sequence in
which the object used by a given are allocated, and the desirability of concurrency
at the various stages. Thus, while the size of the cache and the set of objects used
within a stage impose constraints on the selection process, the desirability of concur-
rency drives this process through an optimality function. We explore these two parts
separately in the following subsections:

5.2.2 Constraints

The maximum memory usage that a single stage can entail is the case where one
task is executing in the stage and all of the others are waiting to enter the stage.
In this case, we must ensure that all of the objects live in these tasks fit within the
cache. For each stage, we thus obtain the following constraint, where L is the set of
objects live at the beginning of the stage, A is the set of objects allocated during the
stage, size(Oi) is the size of object Oi, nOi

is the number of instances of object Oi

managed by the Stingy Allocator, and τ is the amount of cache space allocated to
per-task state:

ΣOl∈L(size(Ol) · nOl
) + ΣOa∈Asize(Oa) ≤ τ

For example, in the case of stage 2 in Figure 5.2(a), we obtain the following constraint:

size(O2) · nO2 + size(O1) ≤ τ

We obtain further constraints from the allocation order of objects that are live in
the same stages. Consider objects O2 and O1 in Figure 5.2(a), which are both live
in stages 2 and 3. As the object O2 is allocated before the object O1, any task that
is holding an O1 object must be holding an O2 object as well. Thus:

nO2 ≥ nO1

the size of the L2 cache. The Linux 2.6 kernel provides a set of interfaces to obtain virtual memory
ranges that are contiguous in physical memory.
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More generally, the relation between any two objects can be characterized in terms of
the standard compiler dominance relation between their allocation and deallocation
sites. That is, for any objects Oi and Oj, if the allocation site of Oi dominates that of
Oj and the allocation site of Oj dominates the deallocation site of Oi, then we obtain
the constraint:

nOi
≥ nOj

5.2.3 Objective function

The above constraints generally leave substantial latitude in the numbers of the
various objects. As the number of objects managed by the Stingy Allocator deter-
mines the number of tasks that can be executing at a given stage, it is desirable to
solve the constraints with respect to an objective function that maximizes the number
of objects available for stages where high concurrency is beneficial. Several aspects
of the servers’s behaviour can be favoured through this strategy. For example, the
reuse of instructions stored locally in the instruction cache can be improved by in-
ducing consecutive runs of the same stage. Similarly, stages that involve I/O can be
forced to have a comparable number of requests waiting at any given time. Since the
magnitude of I/O activity in the servers considered in our work is minimal, we will
consider the former criterion: to improve instruction-cache locality.

Let us consider a simple model of an event-driven program’s use of the instruction
cache. We define a run of a stage as a series of consecutive executions of it for a
batch of tasks. We assume that the first iteration of a run causes instructions of the
stage to be fetched from the main memory so that the following iterations retrieve
these instructions from the cache. Then, the cost of the first iteration of a stage is
significantly greater than that of the second and subsequent iterations. Let the cost
of the first iteration be defined for each individual stage i, by the quantity wi.

We define the instruction-fetch work done in processing N tasks as the sum of the
cost of processing the first iteration of every run involved in treating the tasks. Thus,
minimizing the amount of instruction-fetch work done also minimizes the number of
instruction cache misses.

If Mw is the instruction-fetch work function, S is the set of stages and Ls is the
set of objects live in stage s, then Mw is defined as follows:

Mw(N) = Σs∈S
ws ·N

minOl∈Ls nOl

The intuition behind taking the minimum of the number of the objects that are
live in a stage is the fact that the flow of tasks through a stage is limited by the
minimum number of objects of a given kind available at the stage.

By combining the constraints dictated by the data-cache with this objective func-
tion, we obtain an Integer Programming minimization problem. Thus, the configura-
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tion of the Stingy Allocator, i.e., the number of objects of each kind, is obtained by
solving this problem.

5.2.4 Scheduling for cache efficiency

The Stingy allocator never allocates an object that would cause it to exceed its
configured bounds. To avoid the complexity and inefficiency of starting to execute a
stage only to have its memory allocation fail, we augment the server’s scheduler to
make it aware of the memory requirements of each stage and the current ability of the
Stingy Allocator to satisfy these requirements. This information is provided by a table
that maps a stage to the set of objects that are allocated by the stage and the number
of those objects currently available. As an example, consider one possible solution
for the number of objects O1 and O2 in Figure 5.2(a), nO1 = 3, nO2 = 4. In this case,
when the scheduler is about to schedule task 4 at stage 2, it will discover that the
Stingy Allocator does not have any more instances of object O2 left to allocate, and
will thus select a task that is in another stage. In addition to the benefit of ensuring
that an elected task can run its current stage to completion, this approach allows
the scheduler to group homogeneous tasks into batches and check the availability of
memory for an entire batch at a time. This adjustment of the scheduling algorithm
will be presented in detail in the context of the case study of TUX, taken up later.

5.3 Performance evaluation

To evaluate the performance benefits of our approach, we evaluated the perfor-
mance of unmodified versions of TUX and thttpd on a real network using a standard
benchmarking tool for HTTP servers [34], and then did the same for a version opti-
mized using our toolkit. In Section 7.6 we present an analysis of these experiments.

5.3.1 Benchmarking methodology

In this section, we discuss our benchmarking methodology. Specifically, we de-
scribe the tools and environment under which our experiments were conducted.

5.3.2 Tools

We considered a variety of server benchmarking tools to use in our experiments.
We looked for a tool that was standard and also captured the property of servers we
are most interested in: the performance of a server under workloads with specific con-
currencies. Before we name the tools used, we motivate our choice with a discussion
of the characteristics of server performance we would like to measure.
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There are three main regions in a typical server’s performance regime with respect
to increasing concurrency. The first of these, is the phase in which the load is well
below exercising the full computational bandwidth of the server. In this phase (the
elastic zone3), to begin with, the processing of requests is camouflaged by the latency
of packets over the network. As the load increases, the fraction of the latency occupied
by packet processing increases as well, and the throughput of the server increases
linearly. When the computational bandwidth of the server is neared, i.e., for in-core
workloads, when CPU utilization nears 100%, the server enters it’s plastic zone. In
this stage, performance starts to degrade due to inefficiencies in caching. Finally,
when the size of the incoming request stream increases beyond a final threshold,
it goes into its failure zone. Then, connections begin to get dropped due to queue
overflows, requests get detained for long periods of time due to lack of CPU allocation,
and the server starts to become unproductive.

One popular index of measurement is the uniform load, in terms of the number
of requests per second that a server can handle before it enters the failure zone, and
becomes saturated. httperf [50] is a tool that is known for being able to sustain
server overload by avoiding client-side bottlenecks, like the number of available file
descriptors, the size of socket buffers etc.

Although httperf is suitable for measuring this value of maximum simultaneous
connections, it is not optimum for a controlled application of high-concurrency work-
loads. This is because httperf (and like benchmarks) simply generate requests uni-
formly at regular intervals of m/rate, where m is the number of requests in a burst.
The result is that concurrency can only be escalated when the server is close to over-
load. This escalation in concurrency close to overload is a result of the detention of
requests over long periods of time in the failure zone of the server.

For this reason, we decided to use Apachebench [34], which serves this second
purpose. Apachebench takes the desired concurrency, c, of requests as a command
line parameter, and keeps the total number of parallel requests in the server in the
close neighborhood of c, measuring total throughput for the benchmarked period.
With Apachebench, we measure performance in the server’s plastic zone.

Apachebench, by virtue of sending bursts of requests to maintain the desired
concurrency, has a tendency of building up large batches of requests in the server.
This is because all concurrent requests arrive at the server at approximately the same
time. To offset this behavior, we modified Apachebench to introduce tiny random
delays between requests, as one would expect in a real world scenario. This breaks
up stage concurrencies, without letting the overall concurrency stray too much from
the desired value.

Apachebench has been used to evaluate servers under high request concurrency
before [71], and is used commonly in the industry.

3The terms elastic zone, plastic zone and failure zone are borrowed from material sciences ter-
minology.
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5.3.3 Environment

We ran the load generators on a system with two Xeon processors running at 3GHz
each, with 1MB of cache and with an Intel e1000 Gigabit Ethernet card. The servers
ran on an Intel Pentium IIIM running at 1.4GHz, with 1MB of L2 cache. Running
the Netperf [19] benchmark for both client/server pairs quickly showed that even for
raw data transfers using the protocol stack, the bottleneck of data transfer was on
the server side. The measurements provided in this chapter were obtained with Linux
kernel 2.6.7. The experiments conducted consisted of repeatedly requesting a set of
small files.

5.4 Performance analysis

In this section, we present the results of the experiments we conducted to validate
our approach. These experiments were conducted with the original and modified
versions of the TUX and thttpd servers. We first present the results obtained with
Httperf, followed by those obtained with apachebench. Finally, a brief analysis of the
results obtained concludes the section.

5.4.1 Httperf

Figure 7.7(c) illustrate a plot between the number of requests serviced per second
by TUX, and the number of requests per second generated for it by httperf. Note
that this load is generated uniformly over the period of benchmarking. The maximum
number of concurrent connections over a benchmarked period are also displayed at
points at regular intervals in these graphs.

We observe that the peak performance of the server, i.e., the load handled just
before entering its failure zone increases by about 21%.

5.4.2 Apachebench

Figure 7.7(a) shows the variation of requests serviced per second with increasing
concurrency in the two servers. Figure 7.7(b) shows the number corresponding vari-
ation in L2 cache misses. We note that requests serviced increase by up to 40% for a
concurrency of about 2500 and L2 cache misses decrease by up to 75%.
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Figure 5.4: (a) Throughput of TUX with increasing concurrency. (b) Corresponding
increase in L2 cache misses (c) Peak performance of TUX for uniform load.
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Figure 5.5: Comparison of the performance of the original thttpd server to that of
the optimized thttpd server

5.4.3 Analysis

Apachebench As mentioned earlier, we use apachebench to analyze performance in
the plastic zone of the servers, and httperf to analyze their failure zones. We observe
that over the plastic zone, the number of L2 cache misses decreases drastically in
the modified versions of the servers. As a result of this decrease, performance now
stays relatively consistent over the entire zone. Early on, when concurrency is in the
neighborhood of 40, the increase in performance can also be expected to be due to a
reduction in i-cache misses.

httperf To understand performance improvements close to the failure zone, we
must keep in mind that there is an escalation in concurrency as a server approaches
overload. This trend can be observed in Figure 7.7(c). Since our modifications make
the servers more robust to high concurrencies, the modified servers can handle this
load close to overload better than the unmodified ones. The result is that the point at
which the server fails is delayed, and the server scales to a higher peak performance.

Figure 7.8(a) shows the variation of requests serviced per second with increasing
concurrency in the two servers.

We attribute the massive difference between the improvements observed in the two
servers to the difference in their original implementations. TUX is highly optimized
and makes use of low-level OS interfaces to achieve the highest possible efficiency [43].
On the contrary, thttpd is an ordinary http server that uses standard OS mechanisms
and is not known as a high performance server. As one may observe in Figures 7.7(a)
and 7.8(a), the absolute throughput of TUX is about 2.5 times that of thttpd. We
consider that TUX is representative of the target applications of our work because it
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is already highly optimized, making the cache bottleneck all the more significant.
The cache misses that remain even after the inclusion of the Stingy Allocator

occur due to interference with modules on which the servers depend that are not
modified to use the Stingy Allocator. Such modules include OS modules such as the
protocol stack and the file system drivers and external library functions. In order to
entirely eliminate data-cache misses, one would need to include these modules in the
optimization process through explicit OS support for the Stingy Allocator. We will
explore this extension in the future.

5.5 Shortcomings and possible extensions

We believe the main shortcomings of this work to be the following:

• Instruction-cache optimizations. We have not fully explored the aspect of
instruction-cache optimizations in our optimization framework. Preliminary
experiments have revealed that the behaviour of a server with respect to the
instruction cache is far more erratic than that with respect to the data cache.
We believe that modifying the optimization strategy with respect to the code
generation strategy of the optimizing compiler, by forcing the code generator
to provide additional information related to the alignment and branching prop-
erties of the resulting code, will make the results more predictable.

• Restriction to event-driven programs. Although event-driven programs are con-
venient to apply our optimizations to, general thread and process-based pro-
grams may also benefit from our approach. The memory management interface
used by threaded programs is no different from the one used by event-driven
ones. Furthermore, various frameworks [9, 41] allow the scheduling activities of
generic process and thread-based programs to be programmed. Unfortunately,
one of the key elements that make this work feasible, which such programs lack,
is the explicit notion of stages. One approach to overcoming this problem is to
develop a tool to introduce this notion in a thread-based program, by discover-
ing code regions that can be treated as stages. We are considering this problem
as prospective future work on this project.
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Chapter 6

The Broomstick Optimizer

Our optimization framework consists of a set of analysis and transformation tools
that are used to convert a program to use the Stingy Allocator and the associated
scheduling strategy. In this chapter, we first describe the use of these tools by a
programmer who wants to optimize an event-driven server, and then present the
analyses and transformations underlying the tools.

6.1 A programmer’s eye view

We take as a starting point an event-driven server written in C. Our framework
requires that the server conform to a fixed interface, describing the signatures of
relevant functions such as queuing a stage and allocating memory. If the program
conforms to a compatible interface, as is mostly the case for TUX, Flash and Squid
- programs we have analysed and processed using our tools, source-code annotations
can be used to identify the corresponding functions. If not, wrapper functions need
to be introduced.

Figure 6.1 contains examples of the annotations and wrappers used in TUX. The
add_tux_atom function is identified as the interface construct QueueStage. Its first
argument is labeled with “T”, indicating that it represents the task context, and the
second with “S”, indicating that it represents the stage to be queued. Similarly, the
functions tux_malloc and tux_free are identified as the Malloc and Free constructs
respectively. The tux_malloc_req function, used to allocate a request data structure,
cannot be labeled directly as it does not accept any argument corresponding to the
size of the allocated data. This function must hence be wrapped in a new function that
accepts as argument the object size. Invocations of tux_malloc_req in the source
code must then be textually replaced by invocations of tux_malloc_req_wrap.

Once the server has been made to conform to our interface, it can be analyzed
and transformed by our tools. This process entails the following steps:
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TUX:

void add_tux_atom (tux_req_t *req, atom_func_t *atom)

__attribute__ ((QueueStage ("T","S")));

void *tux_malloc (int size)

__attribute__ ((Malloc ("int")));

void kfree (void *mem)

__attribute__ ((Free ("O"));

static int event_loop (threadinfo_t *ti)

__attribute__ ((Scheduler));

tux_req_t *tux_malloc_req ();

tux_req_t *tux_malloc_req_wrap (int size)

__attribute__ ((Malloc ("int")));

tux_req_t *tux_malloc_req_wrap (int size)

return (tux_malloc_req());

Figure 6.1: Example annotations and wrappers for TUX.

Analyzing memory utilization. The first step is to analyze the memory utiliza-
tion of the program. For this purpose, we provide the tool memwalk, which analyzes
the program and provides conservative approximations of three quantities: (i) The
amount of stack used by the program (ii) The amount of per-task state allocated and
deallocated categorized for the various objects. (iii) The amount of global state used
by the program. The output of this tool is used in the subsequent steps.

Parameterizing the stingy allocator. The second step is to generate a config-
uration of the Stingy Allocator that corresponds to the output of memwalk. This
output is fed into a tool named stingygen that yields a memory map. This memory
map is to be compiled with the server implementation and is referenced by the Stingy
Allocator, which is linked in as a library.

Using the allocator. The third step is to transform the program to use the Stingy
Allocator in place of the original memory allocator used by the program. This step
involves simply replacing the occurrences of Malloc in the stages, by invocations of
the Stingy Allocator memory allocation function StingyAlloc. StingyAlloc differs
from Malloc in that its argument is an index indicating the allocation site rather than
the requested memory size.

Modifying the scheduler. The final step is to modify the scheduler. In this step,
the programmer modifies the scheduler to incorporate the cache criterion. A high-
level conceptual overview of this change is illustrated in Figure 6.3, which shows a
round-robin scheduler for an event-driven program, before and after being modified
to include this criterion. Apart from the usual scheduling criteria summarized by the
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Queue˙Stage : S × T → void A function that queues a task to be executed at a
particular stage.

Scheduler : void → void The implementation of the scheduler.
Malloc : int → O A function to allocate a block of memory for an object in O.
Free : O → void A function that frees the memory allocated for an object in O.

Where,
S ⊂ [0,∞) is the set of stages.
T ⊂ [0,∞) is the set of tasks.
O is the set of objects used by various stages in the course

of processing tasks. Each allocation site corresponds to a
distinct object.

Figure 6.2: Interface used to extract the structure and memory utilization behavior.

while (1) { // as long as the program is running
while (workqueue.events_pending) { // the workqueue is not empty
cur_task = Elect_And_Dequeue_Task(workqueue);
Schedule_Stage(cur_task.stage, cur_task.context);
}

Sleep_And_Wait_For_Events();
}

(a) Original

while (1) { // as long as the program is running
while (workqueue.events_pending) { // the workqueue is not empty
cur_task = Elect_And_Dequeue_Task(workqueue, // StingyDynCheck is now passed

StingyDynCheck); // as a predicate.
Schedule_Stage(cur_task.stage, cur_task.context);
}

Sleep_And_Wait_For_Events();
}

(b) Modified

Figure 6.3: Modifying the scheduler: A high-level conceptual overview
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function Elect˙And˙Dequeue˙Task, an invocation to the StingyDynCheck function,
defined by the Stingy Allocator library, checks whether enough instances of all the
objects required to schedule a task are available. A more detailed discussion of this
aspect is provided in Chapter 7.

The modification of the scheduler is the only step for which we do not provide an
automatic tool, because the scheduling code may vary widely. In our experience with
a variety of legacy event-driven servers (see Section 6.3), it is easy for the programmer
to identify the code implementing the scheduling criteria and to augment this code
with the appropriate use of StingyDynCheck.

6.2 Analyses and transformations

We now describe the analyses and transformations implemented in the memwalk

and stingify tools.

6.2.1 Identifying the stages and the scheduler

To analyze the stack, global, and per-task state of a program, memwalk needs to
identify the stages and to distinguish the code implementing these stages from the
implementation of the scheduler. We begin with the identification of the stages. We
represent the program stages using a graph called the Stage Call Graph (SCG). Nodes
in the SCG represent functions, and edges represent either a call relationship (func-
tion A calls function B) or a queuing relationship (function A queues function B to
be scheduled). Call relationships are referred to as as call edges, and queuing rela-
tionships as event edges. Call edges are indicated by C language function calls. Event
edges are indicated by analyzing invocations of the construct Queue˙Stage, described
in Figure 6.2. Thus, if a function A invokes Queue˙Stage(atask,B) then an event edge
is added between the nodes corresponding to A and B. In either case, the destination
of the edge may be represented by a function pointer. Thus, our implementation
provides an alias analysis that enumerates all the aliases of the function value.

Once the SCG has been built, the stages are the call-edge connected components
that are reachable from at least one event edge. Sometimes, an edge has both in-
coming call edges and incoming event edges. We treat such cases by duplicating the
corresponding node in the graph, so that the call-edge pointed copy becomes part of
a larger stage, and the event-edge-pointed copy becomes the entry point of another
stage. Sometimes, the constructed SCG can consist of many connected components,
corresponding to independent functionalities of the server (such as implementations
of different protocols). Some of these functionalities may include undesired ones that
pollute the SCG. For example, the Squid proxy server uses its event interfaces for
interacting with users, application timeouts etc.. As such functionalities are likely
not subject to heavy loads, they need not be optimized using the Stingy Allocator.
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http_post_header [nf=1,sc=20]

http_send_body [nf=7,sc=72]

http_process_message [nf=45,sc=234]

http_dirlist_head [nf=6,sc=72]

list_directory [nf=2,sc=642]

do_dir_line [nf=3,sc=1140] http_dirlist_tail [nf=9,sc=80]

do_send_abuf [nf=71,sc=56]

flush_request [nf=1,sc=0]

http_lookup_vhost [nf=6,sc=413]

parse_request [nf=47,sc=846]

Figure 6.4: A fragment of the Stage Call Graph (SCG) of TUX. nf denotes the number
of functions in a stage, and sc its maximum stack utilization in bytes. Functions
belonging to the same stage have been collapsed into a node representing the stage.
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The exploration of an SCG may be started at a particular node specified as input to
the memwalk tool.

The entry point of the scheduler is the function implementing the Schedule item
of the interface. The analysis identifies as the scheduler all of the functions reachable
by a depth-first traversal from the node representing this function up to the entry
points of the stages

A part of the SCG obtained by analyzing the TUX Web server is summarized in
Figure 6.4. To save space, we have collapsed functions belonging to a particular stage
into a node representing that stage. Each node in this modified SCG is annotated
with the total number of functions that constitute the corresponding stage, along with
its estimated stack utilization, as calculated by the analysis in the following section.

6.2.2 Memory analysis

The second analysis carried out by memwalk is the analysis of memory used by the
stages. We will describe this separately for each type of state.

Analysis of per-task state The analysis of per-task state can be seen as an ana-
logue of the liveness analysis performed by an optimizing compiler. An object is live
between the time that it is allocated and the time that it is deallocated. Each stage
is associated with a transfer function that updates the set of live objects. When an
object is allocated using the Malloc construct, it is added to the live set, and when
one is deallocated using the Free construct, it is removed from the live set. At the
end of the analysis, those objects that are live at terminal stages are assumed global.
The remaining objects belong to per-task state.

The liveness of objects also determines object dependencies. If two objects are
live in the same stage, then they are dependent and may not share memory (in
much the same way as program variables that are live together may not share the
same registers). Such objects are assigned to different memory regions by the Stingy
Allocator. Objects that cannot be allocated simultaneously for a task may be assigned
the same region. To maximize memory utilization, the dependency analysis colors a
graph with objects at the nodes and edges specifying a dependency between objects.
The number of colors is minimized to maximize the utilization of the cache. Each
color is ultimately allocated a separate region by the Stingy Allocator.

Cycles in the SCG are identified by enumerating strongly-connected components
using Tarjan’s algorithm [67]. For objects allocated in such cycles, the number of
instances that may be allocated per task is unbounded. Thus, by default, these
objects are not managed by the Stingy Allocator and continue to use the original
memory allocator. Alternatively, such data can be managed by the Stingy Allocator
if the programmer annotates the code with an estimate of the number of instances
of each such object that may be allocated per task. The occurrence of cycles in the
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SCG usually corresponds to situations in which a stage queues itself to be executed
in the future due to the unavailability of input data, or a temporary failure. For
example, the parse˙request stage in 6.4 queues itself when the input buffer received
by it is incomplete, and hence cannot be parsed in the current iteration. In most
such situations, objects that are live in the stage are usually allocated in the first
iteration and preserved over subsequent ones. Indeed, loops in the SCG in which
every iteration performs an allocation are rare.

Analysis of global state Global state is identified during the analysis of per-
task state, as described above. Once an object has been classified as global, it is
sub-classified based on its size. Objects smaller than a user-defined threshold are
labeled final and those that are larger are labeled temporary. Final objects are kept
permanently in the cache, while temporary objects are stored in uncached memory
and copied in on demand.1 The threshold used for the classification typically depends
on the object size distribution and the size of the cache. Keeping too many or too
large objects in the cache permanently can leave insufficient room for per-task state,
reducing the number of tasks that can be treated concurrently.

Stack analysis The total stack space required is calculated to be the sum of the
maximum stack used by the scheduler before scheduling a task, added to the max-
imum stack used by the stages. The amount of stack required for a function is
computed as the sum of two quantities: (i) The amount of memory consumed by all
the local variables and (ii) The stack required to call the function, which includes
the sizes of the arguments, the return address and saved registers. The amount of
stack required along a path is calculated by summing the stack requirement for each
function along the path. Recursion is handled in the same way as cycles in the SCG,
by identifying strongly-connected components in the call graph.

If the stack usage varies widely, then allocating the maximum amount required
may result in many locations in the cache-aligned region that are very rarely used.
Indeed, exceeding the cache region allocated to the stack does not result in a program
crash due to a stack overflow, but causes the stack to spill out of the Stingy Allocator’s
cache-aligned region resulting in cache misses. Although this situation is undesirable,
it does not prevent the program from functioning correctly. Thus, the memwalk tool
not only calculates the maximum size of the stack, but also summarizes the sizes
around which the stack utilization of various paths is clustered. The programmer
may edit this information before passing it to stingygen, to choose a smaller stack
size if desired.

1An explanation of the implementation of this aspect of the Stingy Allocator is omitted for
brevity.
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6.2.3 Parameterizing the stingy allocator

Using the memory utilization information provided by memwalk, the tool stingygen
generates a configuration for the Stingy Allocator, which includes a memory map and
some data structures used for accounting. The memory map is based on an analysis
of the sizes of different state components. For the stack and final global state, a fixed
amount of space is set aside permanently, while for the per-task state, dependencies
between objects as discussed in Section 5.2 are used to distribute objects into different
regions. The sizes of the individual regions depend on the calculated values of the
per-object limits, as calculated in Section 5.2.

6.2.4 Code annotations

The Stingy Allocator relies on determinism in the memory utilization behavior of
the program. However, in the presence of features such as recursion and dynamically
sized buffers, statically determining the memory utilization is not possible. To enable
the optimization of programs in the presence of these features, we propose the use of
specific annotations in the source code. These annotations are currently provided as C
language attributes. These annotations have already been mentioned in Section 6.1.

Figure 6.5 illustrates such an annotation in the source code of a server, and a
sugare version of the output generated by the stingify tool. The new attributes
we introduce, stingy_size and stingy_count can be used to provide an optimistic
estimate of the size of a dynamically sized object, or that of the maximum number
of per-task instances of an object in the case of dynamic loops, recursion and SCG
cycles. The code generated for the allocation of the object contains a guard to check if
the specified size of the object is exceeded, and accordingly uses the default allocator
or the Stingy Allocator. No such guard is required in the corresponding deallocation
of the object, as objects allocated by the Stingy Allocator can be identified on the
basis of their virtual memory addresses.

The estimates passed to the tools may be intuitive, or obtained by profiling. As an
example of the former, TUX contains a cycle in its SCG at the request parsing stage.
This loop ensures that parsing begins only when a request has been fully received.
Although the analysis reports that the request buffer allocated in this stage has
potentially unbounded instances, examining the code reveals that this buffer is only
allocated on the first iteration. Thus, an annotation is added to set its stingy_count
attribute to 1. Although generating these estimates is error-prone, the use of a guard
guarantees that a misestimate does not corrupt the functioning of the program. At
worst, providing a wrong estimate reduces performance.
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Input:

#define STINGY_DIR_SIZE 148

char *dir_name __attribute__ ((stingy_size (STINGY_DIR_SIZE));

dir_name = (char *) Malloc(strlen(request->well_formed_url);

Output:

char *dir_name;

int __tmp0 = strlen(request->well_formed_url);

if (__tmp0 < 148) {

dir_name = StingyAlloc(ID_DIR_NAME);

}

else {

dir_name = (char *) Malloc(strlen(request->well_formed_url);

}

Figure 6.5: Guiding the tools using code annotations.

6.3 Application to real programs

We have applied our tools to five event-driven programs: The TUX, thttpd and
Flash web servers, a test server using the Cactus QoS framework and the Squid
proxy server. In the first part of this section, we discuss the applicability of our
approach by giving an overview of the effort involved in processing these programs. All
these programs, with the exception of Flash, are available publicly. The Cactus QoS
framework is distributed as a library along with the implementation of an example
transport protocol (CTP). We applied our tools to a test server that uses this protocol.

6.4 Applicability

In this section, we provide excerpts, shown in Figure 6.7, containing some rep-
resentative wrappers and annotations written to apply our toolkit to the programs
considered.

In Cactus, a stage specifies the next event to be executed using the function
cRaiseEvent. This function is used by the current stage to specify the next event to
be scheduled for the current task. Since a function annotated with QueueStage needs
to accept a pointer to a stage function, cRaiseEvent is wrapped in a function that
accepts an additional argument of a pointer to a function. The field, lBinding->p
in the event data structure contains the function pointer that the event is bound to.
As mentioned in Section 4, an alias analysis collapses this function pointer into a set
of candidate successor stages. This stage is passed as an additional parameter to the
function.
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In thttpd, the scheduler looks up the stage to be executed in a particular context
using a connection state, represented by an enumerated type. Thus, queuing the
next stage to be scheduled amounts to modifying the value of the connection state.
This functionality is thus wrapped in a new function, which accepts the additional
parameter of the function corresponding to the stage to be executed, along the lines
of the previous example.

Collapsed SCGs corresponding to Flash, the Squid server and thttpd are shown
in Figure 6.6. Other SCGs are left out to save space.

6.5 Conclusion

In this chapter, we have presented a set ot tools that simplify the integration of the
Stingy allocator with an event-driven server. These tools use program analysis and are
applied in three steps: (i) Analyzing the memory usage of a program (ii) Configuring a
customized Stingy allocator based on this analysis and (iii) Modifying the event-driven
server to use the customized allocator. Our approach, like the work on specialization
presented in previous chapters is optimistic, in that it exploits opportunities in the
best case of operation. These opportunities are described by the developer of the
server through code annotations, also described in this chapter.

Currently, our tools are limited to event-driven programs. However, other architec-
tures such as multi-threaded and multi-processed programs do not have any intrinsic
characteristics that preclude the use of our approach. We believe that event-driven
programs may be used as an intermediate representation into which such programs
may be translated before being optimized. We are currently working on a project
that aims to achieve this translation.
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idnsRead [nf=17,sc=92]

commHandleWrite [nf=2,sc=88] icpUdpSendQueue [nf=2,sc=80]

httpAccept [nf=240,sc=294]

clientReadRequest [nf=441,sc=460]

sslReadClient [nf=2,sc=64] sslReadServer [nf=1,sc=64]

sslWriteClient [nf=2,sc=56] sslWriteServer [nf=1,sc=56]

(a) Squid

handle_send [nf=3,sc=88]

handle_linger [nf=28,sc=424]

handle_read [nf=140,sc=384]

handle_newconnect [nf=10,sc=0]

(b) thttpd

HelperGoneIdle [nf=7,sc=280]DoConnReading [nf=93,sc=104]

CurrentReaderDone [nf=10,sc=824]

ChildReadHandler [nf=8,sc=244]

DoSingleWrite [nf=59,sc=100] AcceptConnections [nf=15,sc=0] ConsumeHelperStream [nf=4,sc=24]

ReadWriteHandler [nf=5,sc=48] WriteEnvHandler [nf=1,sc=0]

WriteToClient [nf=2,sc=28] IdleSockHandler [nf=1,sc=20]

WriteStreamToClient [nf=2,sc=28]

(c) Flash

Figure 6.6: Portions of collapsed SCGs for the test programs (Call-edges have been
deleted.)
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Cactus:

extern int cRaiseEvent( cevent *pev, ceventmode em,

int nDelay, int nUrgency, int cDynamicArgs);

extern int cRaiseEvent_wrap( cevent *pev, funcptr_t

*func_pointer, ceventmode em, int nDelay, int

nUrgency, int cDynamicArgs)

__attribute__ ((QueueStage

("X","S","X","X","X","X")));

extern int cRaiseEvent_wrap( cevent *pev, funcptr_t *

func_pointer, ceventmode em, int nDelay,

int nUrgency, int cDynamicArgs)

{

cRaiseEvent(pev, em, nDelay, nUrgency, cDynamicArgs);

}

Example invocation:

cRaiseEvent_wrap (pev, pev->lBinding->p,

em, nDelay, nUrgency, cDynamicArgs);

thttpd:

extern int QueueStage (connecttab *c, int state,

funcptr_t *func_pointer) {

c->conn_state = state;

}

Example invocation:

QueueStage(c, CNST_READING, handle_read)

Flash:

void

SetSelectHandler(int fd, SelectHandler s, int forRW)

__attribute__ ((QueueStage ("X", "S", "X")));

Squid:

void eventAdd(const char *name, EVH * func,

void *arg, double when, int weight)

__attribute__ ((QueueStage ("X","S","X","X","X")));

void commSetSelect(int fd, unsigned int type,

PF * handler, void *client_data, time_t timeout)

__attribute__ ((QueueStage ("X","X","S","X","X")));

Figure 6.7: Excerpts of Code Annotations for the Programs. The test programs are
annotated and instrumented with wrappers to expose a standard interface for the
purpose of analysis.
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Chapter 7

Case Study: The TUX server

In this chapter, we revisit the optimizations that have been presented so far in
the context of the TUX server. We start by giving an overview of the TUX server
implementation, moving on to a description of the use of the remote-specialization
infrastructure to specialize this server. Next, we consider the problem of the memory
bottleneck in greater detail. Finally, we present a detailed account of the application
of our approach to this server.

7.1 The tux web server

In this section, we introduce the design and implementation of the TUX web
server, focusing on the aspects that are linked to the cache behavior associated with
operation, such as memory management, staging and scheduling.

7.1.1 Overview

TUX [43] is an in-kernel event-driven server implementation framework for Linux.
Its base distribution currently implements two protocol servers: HTTP and FTP. The
core of TUX, which consists of basic functionalities that can be used to implement
servers is itself protocol independent. The privilege of running as a kernel thread
in kernel space gives TUX direct access to routines and data structures in the pro-
tocol stack that would otherwise have to be accessed via system calls, with coarser
grained control. Such aggressive use of kernel functionalities reduces the overhead
of operations significantly and makes TUX particularly well suited to CPU-bound
workloads.
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7.1.2 Server architecture

Basic request handling in TUX is performed by a set of main threads that are
programmed to accept connections, receive requests, treat them and respond with
the information requested along with the necessary headers. A file cache caches the
content of frequently accessed files so that they need not be re-read from the disk if
requested again. If a requested file is not found in the file cache, it must be retrieved
from the disk. To do so, TUX invokes one of a set of worker threads that are dedicated
to performing disk I/O.

Thus, TUX receives and treats events such as the reception of new connections
and requests using its main threads, and delegates all out-of-core activity to its worker
threads. In this sense, TUX can be classified as an AMPED server [58].

7.1.3 Staging and scheduling

Staging. Request processing in event-driven programs is implemented in several
stages. Each stage queues the next stage in order to be scheduled typically by invoking
a queueing function. Traditionally, the end of one stage and the beginning of the next
is marked by a non-blocking I/O operation, such as a read() or write() system call.
In this way, at the end of a stage, the current request context is deactivated until
a notification is received that the data it has requested have become available. In
the absence of I/O, servers that are sliced in this conventional manner could end up
processing every request in one stage, uninterrupted. Recent work has shown that the
performance of servers can be enhanced by interleaving request processing to exploit
the locality of instructions and static data in specific stages [40, 11]. Thus, in CPU-
bound servers, it makes sense to slice request processing into small processing steps
that can be executed in many request contexts in the form of a pipeline.

In TUX, stage boundaries are defined at every I/O operation, as well as for split-
ting large processing steps into smaller ones. This division, however, is not based on
a concrete criterion, but rather on the decomposition of the server into logical units.
Splitting a stage further into smaller stages involves replacing direct invocations of
procedures with invocations of the queueing function of TUX, add_tux_atom. We
believe that in the long run, the decomposition of the functionality of a CPU-bound
server into stages will be based on architecture-specific properties like the size of the
instruction cache and will be done automatically using program transformation tools.
In this paper, however, we use the default decomposition of TUX.

Scheduling. Since many contexts may become eligible to run at once by one or
more events, a scheduler is assigned the task of deciding the order in which they are
executed. Since TUX is an event-driven server, it implements the scheduler explicitly,
as part of the application. Scheduling in servers has been used to control various
aspects of the functioning of servers [72, 71]. TUX implements an O(1) priority
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scheduler that associates requests with three possible priorities: an ordinary request
priority, a low priority (to throttle requests for application-level bandwidth control)
and a high priority for new connections. A high priority is associated with accepting
new connections to maximize the number of requests received before they are treated.
Treating a large number of requests together, as mentioned, improves instruction
locality within specific stages. This strategy is discussed in the literature [8].

7.1.4 Memory management.

Like in all event-driven servers, the data set of TUX can be classified into three
main regions. In order to be efficient with respect to the cache, a memory allocator
must consider the sizes and lifetime properties of the data in all these regions. These
regions are described below.

The stack. Data that are local to a particular stage, and are stored in the form of
local variables is maintained on the stack. The stack also contains data local to the
scheduler and the initialization routines of the server. In this work, we assume that
the stack is statically allocated. Thus, its size is not influenced by the scheduling
strategy. Previous work has proposed a strategy for on-demand chunk-based stack
allocation [71].

Global data. Global data include global data structures used to store the state of
the threads, configuration parameters etc. The key property of global data is that
their lifetime extends beyond that of requests. Automatically determining if a data
item is global involves a liveness analysis of the item with respect to the stage graph.

Per-request data. Per-request data exist in the scope of a request, and are dis-
carded when they are no longer required, the latest when a request has been processed
and logged. Per-request data consist of context information associated with the re-
quest that is passed from one stage to the other. In contrast to the stack, per-request
data last beyond the end of a stage.

Of the above categories of data, the scheduling strategy and the concurrency of
the workload influence only the size of the per-request data. The size of the stack
is stage specific, and that of global data constant. The division of the data set into
the above categories is a design decision and depends on the slicing of the server into
stages. The more the number of stages, the larger the size of the per-request data is
likely to be. Collapsing many stages into one may allow the per-request state shared
by them to be transferred on to the stack. This process of slicing the functionalities
of a server in an optimal way with respect to the specific nature of the application,
the workload and architectural considerations is a challenging problem. We do not
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Option
Protocol served
Server action
No. of CPUs

No. of Sockets
File-system options
Connection options

Global options
Mime types handled

approach this problem in our work, but we believe that this thesis can pave the way
for more focussed work on this subject.

7.2 Specializing TUX

In this section, we describe the on-demand specialization of TUX. TUX is invoked
through the use of a dedicated system call. This system call takes one main argument:
an integer variable named action, which encodes an instruction for the server, such
as to start to listen for incoming connections, or to shut down. Other configuration
values are set through the proc filesystem (procfs) of UNIX. An application sets the
values of specific variables by writing to the files corresponding to them in TUX’s
subdirectory in procfs.

We include the action parameter and most values exported through procfs are in
the specialization context. The main categories of options used in the specialization
of TUX are tabulated in Figure 7.2. In the remainder of this section, we give an
overview of the specific optimizations enabled through the use of these specialization
values.

7.2.1 Protocol served

TUX implements servers for two protocols: FTP and HTTP. The choice of the
protocol is made at run time by setting the value of the corresponding variable in
procfs. By using this variable in the specialization context, the implementation of
operations like accepting requests, retrieving files and packaging them, corresponding
to the unneeded protocol gets excluded from the specialized code. Specifically, the
entry point into the protocol-specific implementation of TUX is preceded by a condi-
tional that tests the value of this variable. Thus, removing this conditional makes the
entry function and the entire implementation of the protocol-specific handlers that
follows it to become dead code, which is ultimately removed by the specializer.
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i f ( tux proto == PROTO HTTP) {
h t tp go t r eque s t ( req ) ;

}
else

f t p g o t r e qu e s t ( req ) ;

7.2.2 Number of CPUs, Sockets

TUX is multi-threaded, and runs with as many threads as there are CPUs on the
system. Similarly, it is capable of listening and receiving requests on several sockets
at the same time. Both these parameters are configured through procfs. The source
code of TUX contains several occurrences of loops that execute a particular func-
tionality for each processor or correspondingly for each socket. On systems that are
uniprocessor-based or accessible through only one network address, these parameters
can be used in the specialization context. As a result, the loops are unrolled and the
value of the loop variable (0) is inlined into the code.
for ( i = 0 ; i < nr tux thr eads ; i++) {

t h r e ad i n f o t ∗ t i = th r ead in f o + i ;
nr += t i−>n r r eque s t s − t i−>n r f r e e r e q u e s t s ;

}

for ( j = 0 ; j < num sockets ; j++) {
i f ( ! t i−>l i s t e n [ j ] . proto )

break ;
i f ( ! t i−>l i s t e n [ j ] . sock )

break ;
i f ( t cp sk ( t i−>l i s t e n [ j ] . sock−>sk)−>accept queue )

return 1 ;
}

for ( socknr = 0 ; socknr < num sockets ; socknr++) {
t u x l i s t e n t ∗ t u x l i s t e n ;

t u x l i s t e n = t i−>l i s t e n + socknr ;

sock = tux l i s t e n−>sock ;
i f ( ! sock )

break ;
i f ( un l i k e l y ( t e s t t h r e a d f l a g (TIF NEED RESCHED) ) )

break ;

tp1 = tcp sk ( sock−>sk ) ;
. . .

7.2.3 Server actions

The action argument to the TUX system call encodes a command for the TUX
server. This command can be an instruction to start listening on the server sockets,
shut down, register new extensions, add new mime types etc. Many of these actions
are not used in typical usage scenarios. Thus, including the action argument in the
specialization context enables the corresponding code to be specialized with respect
to the actions required in the specific usage context. One significant change brought
about by this step is the removal of functionalities for which the specific actions
removed are entry points.
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7.2.4 Mime-types handled

TUX implements a set of basic MIME types for which it defines standard handlers.
Along with this basic set, it also implements an extended set that can be configured
at the time that the server is invoked. Every file requested is first tested for its
MIME type to determine the handler that is to be invoked to transmit its contents
or to execute it. TUX implements two script handlers: CGI, the Common Gateway
Interface type specified by the IETF [?], and a scripting standard native to TUX:
ASH. The latter is rarely used. Furthermore, the former is also often unneeded
on typical embedded systems. The extended MIME types are set using a special
action with the TUX system call. When this action is excluded through its use in the
specialization context, the MIME types that would invoke the CGI and ASH handling
code are never assigned. Thus, the CGI and ASH handlers become dead code, and
are removed.
switch ( attr−>mime−>s p e c i a l ) {

case MIME TYPE MODULE:
req−>usermode = 1 ;
. . .

}

case MIME TYPE CGI :
Dprintk ( ”CGI reques t %p .\n” , req ) ;
que ry ex t cg i ( req ) ;
return ;

7.2.5 Other options

Other options that are part of the specialization context include options related
to the filesystem out of which the server’s files are served (such as the server’s root
directory), connection options (such as the value of the HTTP keepalive timeout) and
miscellaneous global options used by TUX. The benefits of using these specialization
values are varied and result in local optimizations throughout the server’s code. These
optimizations range from constant inlining and branch removal to loop unrolling.

7.2.6 Experiments

We measured the peformance and size benefits of specializing TUX. We compared
the size and request latency of an unmodified TUX server to one that was specialized
using our infrastructure. The size of the specialized code was found to reduce by a
factor of about 2 (from an initial binary size of 145k to a final size of about 72k). The
latency of requests for 1Kb files reduced from about 1.30ms to 1.13ms, a reduction of
about 14%.
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Figure 7.1: (a) Throughput degradation in the TUX web server with increasing con-
currency (b) Corresponding increase in L2 cache misses

7.3 Cache-related slowdowns in TUX

Cache usage is said to be poor when cached items are evicted on a continual
basis prior to being used, resulting in frequent memory accesses. Poor cache usage
is observed in two main situations that result in data and instruction cache misses
respectively. These situations are discussed below.

Data-cache misses due to an explosion in total per-request data. When the amount
of per-request data exceeds a certain threshold, the total live data set at certain
stages can no longer be accommodated in the hardware caches, causing the eviction
of live cache items. Such situations are most commonly observed in high-concurrency
workloads, which increase the volume of per-request data by virtue of an increased
number of concurrent requests.

Figure 7.1 illustrates this behavior for an unmodified TUX web server running on
Linux 2.6.7. We find that performance degrades and L2 data cache misses increase
steadily as concurrency increases, up to about 4000 concurrent connections. From
here on, performance continues to degrade even though L2 cache misses decrease
sharply. We attribute the former effect to an explosion in the amount of per-request
data and the latter to the fact that the server is close to overload. When the server is
overloaded, it does not have sufficient resources to accept new incoming connections,
causing incoming connections to either remain incomplete or be rejected [?]. This
reduces the number of concurrent requests and hence the amount of per-request data
as well.

To illustrate this problem further, we now consider this effect within a specific
function, namely, the function used to process HTTP messages after they have been
parsed. Since the information required to process HTTP messages has already been
extracted in the parsing stage, it should be available in the cache. However, as the
size of the data set increases, such information frequently gets evicted prematurely.

Instruction-cache misses due to request scattering. Servers inherently benefit from
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the instruction cache by virtue of executing the same instructions repetitively in
different request contexts. When a batch of instructions are applied to consecutive
incoming requests, the second and consecutive applications can be expected to yield
instruction cache hits. Very often, though, batches are received at small intervals
of time that are shorter than the time of treatment of a single request. This causes
requests to be scattered in the processing graph of the server, resulting in competition
amongst the stages involved for the instruction cache.

Such an increase in the number of instructions being used can be observed in
the leftmost part of Figure 7.1(a). As concurrency decreases below 40, we find that
throughput drops (and response time increases), as low overall concurrency implies
low stage concurrency. One prominent indication of this effect is the decreasing
number of bus transactions required for instruction fetches (i.e., L2 instruction cache
misses), as concurrency increases. Thus, although the total L2 cache misses increase,
the decrease in L2 i-cache misses for concurrency less than 40 compensates for them,
and there is an improvement in throughput. Exceptionally, for concurrency less than
10, we observe low performance in spite of few cache misses. The apparently low
performance during this phase results from the fact that the CPU and caches are
under-utilized, and the load is far too low to exercise the full computational bandwidth
of the server.

We conclude from these two contradicting considerations, that the strategy used
to manage requests in a server must make a tradeoff between these two effects. In
particular, throttling the number of requests treated at various stages to avoid an
explosion in per-request data must be balanced with accumulating requests to favor
the instruction cache. Since the degradation in performance due to the former effect is
the dominant one, our strategy revolves around trying to eliminate data-cache misses,
while at the same time reconciling the instruction-cache criterion.

7.4 Cache-optimizing the TUX server: an experi-

ence study

In this section, we describe the effort of using the Stingy allocator by explaining
the steps we followed to perform the optimizations.

7.4.1 Preparatory step

As stated in Chapter 5 the tools that are used to apply our approach operate on
event-driven programs whose scheduling and memory management activities can be
summarized using the constructs specified in a fixed interface. Figure 7.2 gives the
names of the concrete functions in TUX implementing these constructs. If certain
statements bypass these constructs by accessing low-level data structures directly,
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Construct Implementation in TUX
Queue_Stage : S × T → void add_tux_atom

Schedule_Stage : S × T → void tux_schedule_atom

Scheduler : void → void event_loop

Malloc : int → O kmalloc,kmalloc_req,get_abuf,
sock_alloc,kmem_cache_alloc

Free : O → void kfree, kfree_req,sock_release
kmem_cache_free,free_abuf

Where,
S ⊂ [0,∞) is the set of stages.
T ⊂ [0,∞) is the set of request.
O is the set of objects used by various

stages in the course of processing requests.

Figure 7.2: Set of abstractions supplied as input to the analysis tools.

then the statements must be re-written using them. This may happen, for instance,
if a stage is queued in the context of a request by directly manipulating the data
structure defining the request context instead of doing so by invokingSchedule_Stage.
In TUX, we did not require any such rewriting.

TUX handles the multiplicity of protocols using function pointers that reference
protocol-specific actions corresponding to every stage. Our tools include an alias
analysis that collapses these pointers into sets of concrete stages. However, doing
so brings functionalities implemented for the FTP protocol into the analysis. Since
we only intended to analyze the HTTP protocol, we manually replaced all such oc-
currences with their concrete HTTP counterparts. This action excludes functions
associated with protocols other than HTTP from the analysis.

7.4.2 Memory analysis with memwalk

An abbreviated version of the output of the tool memwalk applied to TUX is
shown in Figure 7.3. Figure 7.3(a) shows the stage graph annotated with the number
of distinct functions that are called in each stage along with the maximum stack
consumed in the stage. There are 6 cycles in the stage graph, and no cycles in the
call graph indicating that there is no recursion. memwalk prompts the user to resolve
the cycles in parse_request and http_process_message as they allocate per-request
state.

The cycle at parse_request is to cope with being invoked with an incomplete
request, and is approximated to 1 iteration. The cycle at http_process_message

occurs as this stage queues itself on encountering a file-cache miss. Since the repeat
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http_post_header [nf=1,sc=20]

http_send_body [nf=7,sc=72]

http_process_message [nf=45,sc=234]

http_dirlist_head [nf=6,sc=72]

list_directory [nf=2,sc=642]

do_dir_line [nf=3,sc=1140] http_dirlist_tail [nf=9,sc=80]

do_send_abuf [nf=71,sc=56]

flush_request [nf=1,sc=0]

http_lookup_vhost [nf=6,sc=413]

parse_request [nf=47,sc=846]

(a) Stack utilization

Match for kmalloc_req(%S)⇒[struct thread_info ti] in stage accept_requests (O1)
Match for sock_alloc() in stage accept_requests (O2)
Match for tux_kmalloc(%C)⇒[3000] in stage list_directory (O3)
Match for tux_kmalloc(%C)⇒[1268] in stage parse_request (O4)
Match for tux_kmalloc(%C)⇒[?] in stage http_send_body (O5)

Flow context dependencies: req→ content_gzipped
Match for get_abuf(%S, %C)⇒[struct tux_req_struct, 1113] in stage http_process_message (O6)

kfree_req(O1) in stage accept_requests
kfree(O3) in stage list_directory
free_abuf(06) in stage do_send_abuf
kfree_req(O1) in stage flush_requests
sock_release(O2) in stage flush_requests
kfree(O3) in stage flush_requests
kfree(O4) in stage flush_requests
kfree(O5) in stage flush_requests
free_abuf(O6) in stage flush_requests

(b) Per-request data

Figure 7.3: Memory usage analysis of TUX. (a) The stage graph along with the stack
utilization (sc) of every stage. (b) Output enumerating per-request data.
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execution of the stage is guaranteed to have brought the necessary data into the file
cache, it is approximated to two iterations. Note that providing an overly optimistic
assignment will cause memwalk to overestimate the amount of per-request data re-
quired at a particular stage. As discussed in the following section, the design of the
Stingy allocator ensures that in the worst case such an overestimation will at worst
result in undesired L2-cache misses, without disrupting operation. Thus, high per-
formance in the common case is traded for a potential performance hit in uncommon
situations.

Figure 7.3(b) shows the per-request data objects along with their sizes.

7.4.3 Generating a customized allocator using stingygen

The tool stingygen accepts the output of the tool memwalk and generates a mem-
ory map that contains an area dedicated to each region of memory. The region corre-
sponding to per-request data contains a sub-region for each object type. Two objects
that may not be live at the same time can share such a sub-region. The schema of this
memory map is shown in Figure 7.4. The memory map consists of three parts: (i) the
cache slab, which overlaps with the L2 cache, (ii) the low slab, which lies below the
cache slab (iii) the high slab, which lies above the cache slab. The cache slab is aimed
to contain all the data of the server under common circumstances, and is the part in
which the stack, global data and per-request data are arranged. It is laid out in such
a way that distinct locations in it map into distinct locations in the L2 cache. On
the x86 architecture, this amounts to using a range of physically contiguous memory.
Linux provides this facility through its ioremap and hugetlbpage interfaces.

The remainder of the section provides details on the arrangement of the specific
regions:

The stack is maintained at the lowest addresses of the cache slab, with the low
slab to back it up. Since the stack grows downwards, a stack overflow causes data
on the stack to spill into the upper part of the low slab. This situation can result
if the estimation of stack utilization too aggressive, underestimating the amount of
stack memory required. Although this spill of data into the low slab may cause cache
misses, this arrangement ensures that such a mis-estimation does not overwrite other
program data or cause a memory access violation.

Global data are maintained in the region just above the stack area. This choice is
motivated by the fact that the size of globals is known before-hand and fixed, and so
we are assured that they will not need to be spilled into the regions above or below.

Per-request data are maintained in the dominant upper region of the cache slab.
Each object is allocated a portion of this region, with the size as calculated in the
analyzes described in the previous section. Objects that may not be allocated simul-
taneously for the same request in the program can share the same portion of the cache
slab. The reason we choose the uppermost region of the cache is to be able to spill
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Figure 7.4: Layout of the Stingy allocator’s memory pool.

data into the high slab in case it is infeasible to store it all in the cache slab. Such
situations arise particularly when the size of an object allocated is workload-specific,
in which case, a conservatively approximated amount of space can be reserved in the
cache slab, and the worst-case amount in the high slab.

7.4.4 Modifying the server to use the customized allocator

The tool stingify replaces all the old allocations and deallocations of per-request
data with invocations to the Stingy allocator. The size and other parameters are
replaced with the identifier of the per-request object retrieved by the tool memwalk. If
the server expects the allocator to return a value other than a pointer to the beginning
of the object allocated, then a wrapper must be provided by the programmer to do
the conversion. In TUX, such a conversion is required between a raw buffer and the
structure a_buf containing additional information such as the first page of the buffer.
This conversion applies to replacements of invocations of the function get_abuf. One
such transformation is shown in Figure 7.5. For allocations whose sizes are determined
at run-time, stingify places a conditional to determine if the size to be requested
is of the size approximated by the programmer for the average case, or whether it is
larger. For the former, an object is requested from the cache slab, and for the latter,
depending on a command-line parameter, either an object is allocated in the high
slab, or the default allocator is invoked.

The per-request data in TUX is aggregated into a relatively small number of
structures, eclipsing the benefits of a tool for this activity. However, when the number
of objects is large, the utility of stingify is much more, as manual replacements
require effort and are prone to errors. Furthermore, it can be used to perform quick
replacements when experimenting with different configurations of the server.

7.4.5 Modifying the scheduler

The last step in enabling the Stingy allocator is to modify the scheduler to support
it. Before we describe the concrete modifications to make and propose strategies to
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Original

buff = curr = get_abuf(req, MAX_OUT_HEADER_LEN);

...

...

free_abuf(req->abuf.buf);

Changed by stingify

__tmp0=stingy_alloc(OBJ6);

buff=curr=stingy_usr_wrapper1(__tmp0, req);

...

...

stingy_free(req->abuf.buf);

Wrapper

char *stingy_usr_wrapper1(void *buf,

tux_req_t *req) {

req->abuf.buf=buf;

req->abuf.flags=0;

req->abuf.offset=0;

req->abuf.page=address_to_page(buf);

return buf;

}

Figure 7.5: Introducing the Stingy allocator.
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Standard

while (1) {
// Update synchronous timers, statistics etc.
DoUpdates();
// Handle notifications received through signals
HandleSignals();
// Extract set of requests with I/O completed
requests_waiting = PollIO(current_requests);
// Treat waiting requests
foreach req in requests_waiting {

// Look up current stage of the request
cur_stage_fn = GetCurrentStage(req);
ScheduleStage(req, cur_stage_fn);

}
}

TUX

while (1) {
// Accept any new incoming requests

if (NewRequestsWaiting())
AcceptNewRequests();

if (!Empty(active_requests)) {
foreach req in active_requests {
cur_stage_fn = GetCurrentStage(req);
ScheduleStage(req, cur_stage_fn);

}
}
if (nothing_to_do)

Sleep();
}

TUX Modified

while (1) {
// O(1) election of the highest priority stage
// Get the highest priority (eg. 5) and use it to
// get the current stage queue.
cur_priority = GetCurrentHighestPriority();
cur_stage = GetNextStage(cur_priority);
cur_batch = GetActiveRequests(stage);
foreach req in cur_batch {

cur_stage_fn = GetCurrentStage(req);
ScheduleStage(req, current_stage_fn);

}
if (nothing_to_do)

Sleep();
}

Figure 7.6: Scheduler of a typical event-driven server limited by I/O
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best go about the process, we will describe the usual implementation of schedulers in
event-driven programs.

Schedulers in event-driven programs

Figure 7.6 illustrates a typical scheduler in a server limited by I/O. The scheduler
consists of a loop that starts by handling global activities like updating stats, updating
timers and checking for time-outs, handling signals etc.. Next, it typically polls for
requests that have just completed a read or write to or from an I/O device, and are
waiting to be serviced. It then iterates through this set of active requests, scheduling
each request in the context of the stage it is currently in.

A high-level view of the scheduler of TUX is shown in Figure 7.6. This scheduler
is similar, but not identical. The key difference between the scheduler of TUX and
the one shown at the top of Figure 7.6 is that the former considers the requests with
I/O completed as a subset of the total set of active requests to be treated. A stage
may terminate at an arbitrary point, and the request made eligible to be scheduled
in the next stage. All requests waiting to be processed are thus considered by the
scheduler. Requests that have just completed an I/O action are added to the set of
active requests asynchronously by the helper processes. The scheduler orders requests
on the basis of their priority. Accepting new requests is given the highest priority by
treating all incoming requests before considering requests at other stages.

Our scheduling strategy

Our scheduling strategy requires the inclusion of two criteria in the scheduler.
The first is support for the Stingy allocator. The scheduler must check if enough
per-request memory is available for a request before it is elected. This is done by
invoking the query function generated by the tool stingygen. The second criterion is
to favor the instruction cache by bringing requests in early stages of processing up to
the mark with requests in advanced stages. These criteria can be handled by defining
additional request priorities.

We first change the scheduler of TUX to iterate through stages instead of individ-
ual requests, considering the entire lot of requests active at a particular stage. Once
we have done so, we sort requests on the basis of three new priorities: (i) Requests
that have attained maximal flow at a particular stage by using up all the per-request
memory allocated for them at that stage are given the highest priority, as no more
requests can be accumulated with them. (ii) Requests for which the amount of per-
request memory available is insufficient are given the lowest priority, as they will likely
cause cache misses. (iii) The remaining requests are given a medium priority that is
lower than the priority of the first class of requests, as it is possible that requests in
early stages of processing may eventually come to the level of these requests, increas-
ing the size of the batch. This priority is weighted, with more favorable weights given
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to requests that are earlier in the course of treatment, as compared to those that are
advanced.

This final scheduler is illustrated at the bottom of Figure 7.6.

7.5 Performance evaluation

To evaluate the performance benefits of our approach, we evaluated the perfor-
mance of unmodified versions of TUX and thttpd on a real network using a standard
benchmarking tool for HTTP servers [34], and then did the same for a version opti-
mized using our toolkit. In Section 7.6 we present an analysis of these experiments.

7.5.1 Benchmarking methodology

In this section, we discuss our benchmarking methodology. Specifically, we de-
scribe the tools and environment under which our experiments were conducted.

7.5.2 Tools

We considered a variety of server benchmarking tools to use in our experiments.
We looked for a tool that was standard and also captured the property of servers we
are most interested in: the performance of a server under workloads with specific con-
currencies. Before we name the tools used, we motivate our choice with a discussion
of the characteristics of server performance we would like to measure.

There are three main regions in a typical server’s performance regime with respect
to increasing concurrency. The first of these, is the phase in which the load is well
below exercising the full computational bandwidth of the server. In this phase (the
elastic zone1), to begin with, the processing of requests is camouflaged by the latency
of packets over the network. As the load increases, the fraction of the latency occupied
by packet processing increases as well, and the throughput of the server increases
linearly. When the computational bandwidth of the server is neared, i.e., for in-core
workloads, when CPU utilization nears 100%, the server enters it’s plastic zone. In
this stage, performance starts to degrade due to inefficiencies in caching. Finally,
when the size of the incoming request stream increases beyond a final threshold,
it goes into its failure zone. Then, connections begin to get dropped due to queue
overflows, requests get detained for long periods of time due to lack of CPU allocation,
and the server starts to become unproductive.

One popular index of measurement is the uniform load, in terms of the number
of requests per second that a server can handle before it enters the failure zone, and

1The terms elastic zone, plastic zone and failure zone are borrowed from material sciences ter-
minology.
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becomes saturated. httperf [50] is a tool that is known for being able to sustain
server overload by avoiding client-side bottlenecks, like the number of available file
descriptors, the size of socket buffers etc.

Although httperf is suitable for measuring this value of maximum simultaneous
connections, it is not optimum for a controlled application of high-concurrency work-
loads. This is because httperf (and like benchmarks) simply generate requests uni-
formly at regular intervals of m/rate, where m is the number of requests in a burst.
The result is that concurrency can only be escalated when the server is close to over-
load. This escalation in concurrency close to overload is a result of the detention of
requests over long periods of time in the failure zone of the server.

For this reason, we decided to use Apachebench [34], which serves this second
purpose. Apachebench takes the desired concurrency, c, of requests as a command
line parameter, and keeps the total number of parallel requests in the server in the
close neighborhood of c, measuring total throughput for the benchmarked period.
With Apachebench, we measure performance in the server’s plastic zone.

Apachebench, by virtue of sending bursts of requests to maintain the desired
concurrency, has a tendency of building up large batches of requests in the server.
This is because all concurrent requests arrive at the server at approximately the same
time. To offset this behavior, we modified Apachebench to introduce tiny random
delays between requests, as one would expect in a real world scenario. This breaks
up stage concurrencies, without letting the overall concurrency stray too much from
the desired value.

Apachebench has been used to evaluate servers under high request concurrency
before [71], and is used commonly in the industry.

7.5.3 Environment

We ran the load generators on a system with two Xeon processors running at 3GHz
each, with 1MB of cache and with an Intel e1000 Gigabit Ethernet card. The servers
ran on an Intel Pentium IIIM running at 1.4GHz, with 1MB of L2 cache. Running
the Netperf [19] benchmark for both client/server pairs quickly showed that even for
raw data transfers using the protocol stack, the bottleneck of data transfer was on
the server side. The measurements provided in this chapter were obtained with Linux
kernel 2.6.7. The experiments conducted consisted of repeatedly requesting a set of
small files.

7.6 Performance analysis

In this section, we present the results of the experiments we conducted to validate
our approach. These experiments were conducted with the original and modified
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versions of the TUX and thttpd servers. We first present the results obtained with
Httperf, followed by those obtained with apachebench. Finally, a brief analysis of the
results obtained concludes the section.

7.6.1 Httperf

Figure 7.7(c) illustrate a plot between the number of requests serviced per second
by TUX, and the number of requests per second generated for it by httperf. Note
that this load is generated uniformly over the period of benchmarking. The maximum
number of concurrent connections over a benchmarked period are also displayed at
points at regular intervals in these graphs.

We observe that the peak performance of the server, i.e., the load handled just
before entering its failure zone increases by about 21%.

7.6.2 Apachebench

Figure 7.7(a) shows the variation of requests serviced per second with increasing
concurrency in the two servers. Figure 7.7(b) shows the number corresponding vari-
ation in L2 cache misses. We note that requests serviced increase by up to 40% for a
concurrency of about 2500 and L2 cache misses decrease by up to 75%.

7.6.3 Analysis

Apachebench As mentioned earlier, we use apachebench to analyze performance in
the plastic zone of the servers, and httperf to analyze their failure zones. We observe
that over the plastic zone, the number of L2 cache misses decreases drastically in
the modified versions of the servers. As a result of this decrease, performance now
stays relatively consistent over the entire zone. Early on, when concurrency is in the
neighborhood of 40, the increase in performance can also be expected to be due to a
reduction in i-cache misses.

httperf To understand performance improvements close to the failure zone, we
must keep in mind that there is an escalation in concurrency as a server approaches
overload. This trend can be observed in Figure 7.7(c). Since our modifications make
the servers more robust to high concurrencies, the modified servers can handle this
load close to overload better than the unmodified ones. The result is that the point at
which the server fails is delayed, and the server scales to a higher peak performance.

Figure 7.8(a) shows the variation of requests serviced per second with increasing
concurrency in the two servers.



7.6. PERFORMANCE ANALYSIS 94

 8000

 10000

 12000

 14000

 16000

 18000

 1  10  100  1000  10000

R
eq

/s

Concurrency

Original
Final

(a) Throughput

 12000
 16000
 20000
 24000
 28000
 32000
 36000
 40000
 44000
 48000

 1  10  100  1000  10000

S
am

pl
es

Concurrency

Original
Final

(b) L2 Cache misses

 4000

 6000

 8000

 10000

 12000

 14000

 4000  6000  8000 10000 12000 14000

R
eq

/s

Target req/s

14
48

57
74

83

2845

36857
28504

Original
Final

(c) Req/second close to overload (httperf)

Figure 7.7: (a) Throughput of TUX with increasing concurrency. (b) Corresponding
increase in L2 cache misses (c) Peak performance of TUX for uniform load.
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Figure 7.8: Comparison of the performance of the original thttpd server to that of
the optimized thttpd server

We attribute the massive difference between the improvements observed in the two
servers to the difference in their original implementations. TUX is highly optimized
and makes use of low-level OS interfaces to achieve the highest possible efficiency [43].
On the contrary, thttpd is an ordinary http server that uses standard OS mechanisms
and is not known as a high performance server. As one may observe in Figures 7.7(a)
and 7.8(a), the absolute throughput of TUX is about 2.5 times that of thttpd. We
consider that TUX is representative of the target applications of our work because it
is already highly optimized, making the cache bottleneck all the more significant.

The cache misses that remain even after the inclusion of the Stingy Allocator
occur due to interference with modules on which the servers depend that are not
modified to use the Stingy Allocator. Such modules include OS modules such as the
protocol stack and the file system drivers and external library functions. In order to
entirely eliminate data-cache misses, one would need to include these modules in the
optimization process through explicit OS support for the Stingy Allocator. We will
explore this extension in the future.

7.7 Shortcomings and possible extensions

We believe the main shortcomings of this work to be the following:

• Instruction-cache optimizations. We have not fully explored the aspect of
instruction-cache optimizations in our optimization framework. Preliminary
experiments have revealed that the behaviour of a server with respect to the
instruction cache is far more erratic than that with respect to the data cache.
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We believe that modifying the optimization strategy with respect to the code
generation strategy of the optimizing compiler, by forcing the code generator
to provide additional information related to the alignment and branching prop-
erties of the resulting code, will make the results more predictable.

• Restriction to event-driven programs. Although event-driven programs are con-
venient to apply our optimizations to, general thread and process-based pro-
grams may also benefit from our approach. The memory management interface
used by threaded programs is no different from the one used by event-driven
ones. Furthermore, various frameworks [9, 41] allow the scheduling activities of
generic process and thread-based programs to be programmed. Unfortunately,
one of the key elements that make this work feasible, which such programs lack,
is the explicit notion of stages. One approach to overcoming this problem is to
develop a tool to introduce this notion in a thread-based program, by discover-
ing code regions that can be treated as stages. We are considering this problem
as prospective future work on this project.
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Chapter 8

Conclusion

Program Specialization and compilation-oriented cache optimizations provide a
powerful methodology to optimize programs with minimal human intervention. We
have developed these two techniques in the context of network software and proposed
an optimization framework involving the analysis and transformation of programs
that implement network protocols. By addressing the main bottlenecks in modern-day
servers: the instruction-execution overhead and the memory latency, this framework
can be used to drastically improve the performance of the programs optimized.

We have successfully used this framework to optimize TCP/IP stacks. We have
identified specific specialization opportunities inherent to protocol stacks, along with
the optimizations enabled by these opportunities. These optimizations have been
applied to the TCP/IP implementation of the Linux kernel. Our approach leverages
the maturity of existing implementations while reaping the benefits of pruned and
simplified code.

We have also presented a customization infrastructure based on a remote special-
ization server, which can be used to specialize OS code on embedded systems. The
components of this infrastructure include a context manager, which communicates the
specialization context to the specialization server, a code manager, which manages
specialized code, and a run-time layer, which conducts the process of specialization.
By using a two phase-specialization process that entails filling in a specialization tem-
plate and compiling it using a full-fledged compiler, we reuse existing compilers for
embedded systems. A specialization interface implemented using system calls allows
applications to dynamically request specialized functionalities.

The wide gap between memory access times and the time taken to perform com-
putations has introduced a new bottleneck in concurrent programs. Network servers
are the most severely affected of such programs as their primary activity involves the
manipulation of memory objects. We have addressed this bottleneck by developing
an algorithm that takes into account both the concurrent execution of code and the
management of memory in the program. By balancing these two aspects through
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the co-design of a scheduling algorithm and a memory manager, we ensure that the
memory activities of the server can be contained to the size of the L2 cache, almost
eliminating the need to access main memory.

Applying this co-design to existing programs manually is a daunting task, since
it is derived from the specific memory management and scheduling behaviour of the
program. We have thus developed a set of static analysis tools to assist in the applica-
tion of this process to event-driven servers. A programmer can declare the scheduling
and memory-management activities of a server to these tools by annotating it with
elements of a standardized interface described in this work. The tools then automat-
ically extract the structure of the server (the scheduling call graph) as well as the
memory management behaviour of the server, and generate a customized memory
allocator that can then be plugged into the server.

Our work also has certain weaknesses in its current state. Some of these have been
already been mentioned in the conclusions of previous chapters. Our work on spe-
cialization is derived from the crucial component of a program specializer. Currently,
using a specializer such as Tempo demands significant effort of the programmer in
having to extensively annotate the source code to be specialized. The author believes
that this load on the programmer can be reduced through more scalable goal-oriented
alias analysis and binding-time analysis. The second half our this thesis suffers from
its dependence on the event-driven architecture, which is not the default programming
style used in OS programming. In order for our approach to become portable and
widely applicable, this restriction must be eliminated. We are currently working on
a project that aims to translate thread and process-based programs into event-driven
programs. Using such an translation engine will allow the Stingy allocator to be inte-
grated with process-based programs using event-driven programs as an intermediate
form.
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Appendix

This appendix is a summary of issues raised by the reviewers of this thesis, both
prior to and during its defense along with the author’s responses to them, which have
now been revised. Many of the ideas presented in this appendix have been integrated
into the main body of the thesis. This content is presented in the order in which it
was discussed when this thesis was defended.

Gilles Muller: One aspect of this work that stands out from previous ef-
forts involving the specialization of system code is the virtualization of
device memory on a system. This aspect has not been presented in detail
and requires greater explanation.

The implementation of device virtualization in a virtual machine has been doc-
umented in an article [5]. Remote specialization uses the functionality described in
this paper to emulate the embedded device on the specialization server. Executing
every single instruction of the embedded device on the specialization server is unduly
expensive. Moreover, the specialization server executes only static code. Thus, we
have included into the stub generator functionality needed to transfer static values
to the server on every specialization request. These values are determined when the
system is rendered specializable, when binding-time analysis is performed.

Once these static values are available on the specialization server, the specializer
needs two additional capabilities: to be able to intervene every time such a static value
is requested and to emulate the operator (the instruction) issued on the corresponding
static value. This aspect is now better explained in Section 4.2.5.

Gilles Muller: The transfer of pointer values from the device context to
the specializer has been explained in detail. However, the method of feed-
ing in scalar values has not been discussed.

We generate specialized code in two phases: a first phase that results in specialized
C code from which concrete values of the specialization context are absent and a
second phase that involves feeding in the specialization context and generating finally
specialized binaries.
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This question, along with the previous one, involves the specification of special-
ization values for the second phase. As described in the response to the previous
question, the precise values to be transfered are determined at the time the system
is made specializable. Of these, pointer values involve emulation. Scalar values on
the other hand are translated into assignment statements that are inlined into the
specialized code templates before they are compiled.

Gilles Muller: Cache-optimizing a server does not take into consideration
interference from the OS kernel and other programs.

When a server is under stress, it stresses the resources available on the system. We
have demonstrated that the resource that dominates performance in such situations is
the L2 cache. Under situations of heavy load, the rate of cache misses resulting from
server activity constitutes about 90-97% of the total rate of cache misses in the system.
Thus, improving the usage of this dominating constituent significantly improves the
usage of the resource globally, leading to appreciable performance improvements.

Nevertheless, the above hypothesis holds only in the case in which a single applica-
tion dominates system performance. If instead, the system load were to be distributed
across two or more applications, then our approach of optimizing the cache local to
the application would likely be inadequate in containing the cache-miss rate. Such
situations will require explicit OS support for the Stingy allocator so that it can be
shared across multiple applications. This project has been set aside as future work.

Gilles Muller: How have cache misses been measured? Why have absolute
counts not been provided in the breakups of cache misses?

We have used a version of the oprofile software for the Linux 2.6 kernel to mea-
sure cache-miss rates. The Pentium III, Athlon and later models of Intel and AMD
processors implement hardware performance counters that can be configured to count
specific hardware events (such as cache misses, pipeline stalls, memory accesses etc.).
These counters require a software device driver that intercepts overflows in the hard-
ware counters, and uses this information to maintain global counts. The software
driver itself needs to maintain an array of counters.

These software counters are stored in the main memory and themselves gener-
ate cache misses. When the number of counters is large, this interference from the
software driver contaminates the output, which aims to represent the true number of
cache misses resulting from the module that is being profiled (in this case, a server).

Precisely measuring the number of true cache misses is a research problem. We
speculate that a sophisticated probabilistic counting mechanism such as ones used
in the database community [54] will lead to satisfactory results. However, in this
project we have manually modified oprofile to measure cache misses across small sets
of memory addresses depending on the needs of the experiment conducted.
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Gilles Muller: How is the memory map of the Stingy allocator instantiated
so that it possesses the desired properties (non-interference and staying
within the cache).

The L2 cache can be pictured as a n x m grid, with n rows and m columns,
where m is equal to the associativity of the cache. In general, given a memory
address (physical or virtual, depending on the architecture), the row n is determined
unambigously, i.e., each address is hashed into the beginning of one of the m cache
lines in the corresponding row.

Comparing the value of the current address to an identifying tag associated with
each of these m lines in parallel determines whether or not the address is already
cached. If not, then one of the existing cache lines must be evicted. The specific
strategy used to do so depends on the architecture and processor model.

Our approach is to ensure that only m addresses in the main memory are used
per row of the cache in the implementation of the server. This ensures that within
the server, no interference is to take place regardless of the cache-eviction strategy.
Our approach, however, does not preclude the possibility of interference from other
processes. In the current state of our implementation, without explicit OS support
for the Stingy allocator, such interference is tolerated. Since the activity we optimize
is the one that dominates the performance of the system, any new cache line that
competes with the server is quickly evicted as soon as the corresponding memory in
the server becomes active.

Our strategy works the best when the determination of the column j within the
m lines depends only on the address to be cached, that is, a second hash function is
used to determine the location. However, we expect that because of the overwhelming
domination of resources under heavy load, our approach will not suffer significantly
even if a true LRU scheme were to be used.

Marc Shapiro: The experiments that evaluate the work presented in this
thesis are limited to microbenchmarks (eg. code speedup) and simplistic
examples (eg. downloading static files). A realistic evaluation of this work
should involve real-world situations.

Marc Shapiro: In the evaluation of remote specialization, a cost/profit
curve should be constructed so that one may reason about the feasability
of using remote specialization in various situations.

Our work introduces mechanisms that may be used in real-world applications
to optimize the functioning of network systems. The instantiation of these mecha-
nisms in a real-world scenario and integrating it with existing tools and development
methodologies requires domain knowledge, and must be done individually for each
application.
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We have evaluated the mechanisms we have proposed in simplified versions of
various applications (data transfers over TCP, downloading static files in HTTP). The
integration of our approach into dynamic content delivery will require the design and
implementation of a new interface that exposes the Stingy allocator - or a simplified
wrapper for it - to individual dynamic scripts. Existing scripting languages such as
PHP allocate memory explicitly, and are thus per se incompatible with our approach.

The TUX server has one such proprietary interface named the TUX module format
that allows the allocation of fixed-sized objects that are shared across scripts and can
be reused across requests. Evaluating the Stingy allocator and our implementation
in the context of such scripts will be part of future extensions of our work.
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